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PAVEL IEVLEV

1. Абстрактное винеровское пространство

1. Стандартная гауссовская мера характеризуется соотношением∫
Rd

ei⟨x,y⟩ dµ(x) = e−
1
2 |y|

2

2. Пусть H сепарабельное гильбертово с нормой | · |. тогда естественно было бы ожидать существования

меры µ на H такой что ∫
H

ei⟨x,h⟩ dµ(x) = e−
1
2 |h|

2

но такой меры не существует.

3. Доказательство. Пусть hn ортонормированный базис H. Тогда∫
H

ei⟨x,hn⟩ dµ(x) = e−1/2

Но ⟨x, hn⟩ → 0 при n→ ∞. Применяем теорему Лебега о мажорированной сходимости:

lim
n→∞

∫
H

ei⟨x,hn⟩ dµ(x) =

∫
H

dµ(x) = 1 = e−1/2.

Противоречие. □

4. Более вероятностное доказательство: если такая мера бы существовала, то последовательность ⟨h, hn⟩
была бы iid со стандартным гауссовским распределенем, а значит по закону больших чисел ∥h∥2 =∑

|⟨h, hn⟩|2 = ∞ для почти всех h по мере µ.

5. Замечание. цилиндрическую меру на H можно ввести всегда, вот так:

µ{x ∈ H : Px ∈ D} := µP {x ∈ PH : x ∈ D}, где P это конечномерный проектор.

Но она не продолжится до сигма-аддитивной. Как пишет Струк, H оказывается слишком маленьким

чтобы уместить на себе гауссову меру.

6. Гросс предложил выход из положения: взять на H более мягкую норму ∥ · ∥ и пополнить H по ней.

Получится какое-то банахово пространство B.

7. От нормы ∥ · ∥ потребуем следующего свойства: для любого ε > 0 существует конечномерный

ортогональный проектор Pε такой что

P конечномерный, PPε = 0 =⇒ µP {x ∈ PH : ∥x∥ > ε} < ε.

Здесь PH это конечномерное пространство, µP стандартная гауссова мера на нём. Такие нормы

называются измеримыми.

8. Факт: если ∥·∥ гильбертова (порождена скалярным произведением), то она измерима ⇐⇒ существует

оператор Гильберта-Шмидта T такой что ∥x∥ = |Tx|. Сформулируем это в виде утверждения.
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9. Утверждение. Пусть H сепарабельное гильбертово пространство. Тогда функция

φ(x) = exp

(
i⟨a, x⟩ − 1

2
⟨Kx, x⟩

)
, x ∈ H

является характеристической функцией гауссовской меры γ наH если и только если a ∈ H и оператор

K : H → H ядерный.

• Доказательство можно посмотреть в книжке Гауссовские меры Богачёва, теорема 2.2.1.

10. Единичный оператор не ядерный, значит стандартной гауссовской меры на сепарабельном гильбертовом

пространстве нет.

11. Пара B ↪→ H, где B = {x ∈ H : ∥x∥ <∞} называется абстрактным винеровским пространством.

12. Теорема Гросса. Пусть (H,B) абстрактное винеровское пространство, i : H ↪→ B. Тогда µ ◦ i−1 это

сигма-аддитивная мера на B.

• Важно: не-сигма-аддитивная гауссовская мера на H становится сигма-аддитивной на B.

13. Теорема Ферника. Существует константа c > 0 такая что
∫
B

ec∥x∥
2

dµ(x) <∞.

14. В частности, существуют все моменты ∥x∥k, а также es∥x∥ для любого s.

15. Замечание. Главный объект здесь это H, а не B. От него всё отправляется, к нему всё возвращается.

И есть много разных способов выбрать B, никакой из них не является каноническим.

2. Теорема Бохнера-Минлоса

1. Счётно-гильбертово пространство. Пусть | · |n это счётное семейство гильбертовых норм на

линейном пространстве V . Введём на V метрику

d(u, v) :=

∞∑
n=1

2−n |u− v|n
1 + |u− v|n

.

Если V по ней полно, то оно называется счётно-гильбертовым пространством.

2. Не ограничивая общности будем считать что | · |n возрастает по n. Пусть Vn это пополнение V по

| · |n. Тогда

V ⊂ · · · ⊂ Vn+1 ⊂ Vn ⊂ · · · ⊂ V1, V =

∞⋂
n=1

Vn.

3. Ядерное пространство. Счётно-гильбертово пространство V называется ядерным если Vm ↪→ Vn

это оператор Гильберта-Шмидта.

4. Ядерные пространства имеют много свойств похожих на Rr. Например, компактность в ядерном

пространстве это ограниченность плюс замкнутость. Следовательно, бесконечномерные банаховы

пространства не ядерные. А ещё в них верна абстрактная теорема о ядре, которой мы здесь касаться

не будем.

5. Позже мы покажем как построить большой запас ядерных пространств.

6. Теорема Бохнера-Минлоса. Пусть V ядерное, φ : V → C. Тогда

φ ≽ 0, φ(0) = 1, φ непрерывная ⇐⇒ ∃ ν мера на V ′ : φ(v) =

∫
V ′
ei⟨x,v⟩ dν(x) .

“≽” это положительная определённость:

φ ≽ 0 ⇐⇒ ∀{(zj , vj) ∈ C × V, j = 1, . . . , n} :
∑
j,k

zj φ(vj − vk) zk ≥ 0

• Доказательство есть в книжке Гельфанда-Виленкина.

• На самом делел чтобы её доказать надо взять конечномерную теорему Бохнера, которая говорит

что если φ : Rd → Cd удовлетворяет требованиям теоремы выше, то существует мера µ на Rd такая

что
∫

Rd e
i⟨ω,ξ⟩ dµ(ξ)
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• Применяя эту теоему, получаем целое семейство цилиндрических мер µI , которое автоматически

оказывается согласованным

• =⇒ по теореме Колмогорова существует какая-то мера µ на RS(R).

• Теперь нужно показать что µ(S ′(R)) = 1. Это требует аккуратных оценок.

7. φ удовлетворяющая трём условиям из теоремы Бохнера-Минлоса называется характеристической

функцией. Теорема, таким образом, говорит что любой характеристической функции отвечает мера

и наоборот.

3. Белый шум

1. Рассмотрим Гельфандову тройку S(R) ⊂ L2(R) ⊂ S ′(R). Определим на S(R) функцию

C(ξ) = e−
1
2 |ξ|

2
0 ,

где | · |0 это L2-норма. Покажем что C характеристическая.

2. Утверждение. C положительно определена.

Доказательство. Возьмём набор (ξj , zj) ∈ S(R)× C, j = 1, . . . , n и проверим определение. Возьмём

конечномерное пространство V = span{ξi} и стандартную гауссову меру µV на нём. Тогда для ξ ∈ V∫
V

ei⟨ξ,y⟩ dµV (y) = e−
1
2 |ξ|

2
0 .

Чтобы это увидеть, можно идентифицировать V c Rn вот так:
∑
xiξi 7→ x и заметить что∫

V

ei⟨ξ,y⟩ dµV (y) =

∫
Rn

ei
∑

xi⟨ξ,ξi⟩ dµRn(x) = exp

(
1

2
|(⟨ξ, ξ1⟩, . . . , ⟨ξ, ξn⟩)|2Rn

)

= exp

(
1

2

∑
|⟨ξ, ξn⟩|2

)
= exp

(
1

2
|ξ|20.

)
В последнем переходе использовали ξ ∈ V . Из этого следует что

∑
j,k

zj C(ξj − ξk) zk =
∑
j,k

∫
V

zj e
i⟨ξj−ξk,y⟩ zk dµV (y) =

∫
V

∣∣∣∣∣∣
∑
j

zj e
i⟨ξj ,y⟩

∣∣∣∣∣∣
2

dµV (y) ≥ 0.

□

3. Замечание: мы обошлись конечномерными гауссовскими мерами чтобы это доказать!

4. Ясно что C(0) = 1 и C непрерывная функция на S(R).
5. Чтобы сослаться на Бохнера-Минлоса, остаётся снабдить S(R) топологией относительно которой оно

было бы ядерным. Это делается следующим образом:

|ξ|2n,k :=

∫
R
|xnξ(k)(x)|2 dx, n, k ≥ 0.

Мы обсудим ниже почему S(R) с топологией порождённой этим семейством полунорм ядерное.

6. Следовательно, по теореме Бохнера-Минлоса существует мера µ на S ′(R) такая что∫
S′(R)

ei⟨ω,ξ⟩ dµ(ω) = e−
1
2 |ξ|

2
0 .

Мера с таким свойством единственная. Вероятностное пространство (S ′(R), µ) называется white

noise space, µ называется стандартной гауссовской мерой на пространстве белого шума. Интеграл

по ней будем обозначать E или
∫
· dµ, пространство L2(µ) в литературе часто обозначают (L2).
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7. Меру µ которую мы построили можно формально записать в виде

dµ(ω) = N exp

(
−1

2

∫
|ω(t)|2 dt

)
dω .

В этой формулеN это нормировочная константа, экспонента это бесконечномерная гауссова плотность,

а dω это бесконечномерная мера Лебега. К сожалению, ни один из этих объектов не существует.

Однако, имея это в виду, ей можно пользоваться. Например, из неё формально следует правильный

закон преобразования меры µ при сдвигах ω 7→ ω + h (теорема Камерона-Мартина-Гирсанова):

dµ(ω + h)

dµ(ω)
= exp

(
−⟨ω, h⟩ − 1

2
∥h∥2

)
, h ∈ L2(R).

8. Следствие. Для любой ξ ∈ S(R), ω 7→ ⟨ω, ξ⟩ это случайная величина с распределением N(0, |ξ|20):

E⟨ω, ξ⟩ = 0, E⟨ω, ξ⟩2 = ∥ξ∥2L2(R), ξ ∈ S(R).

9. Следствие. E⟨ω, ξ⟩⟨ω, η⟩ = ⟨ξ, η⟩L2(R). (Просто поляризационное тождество.)

10. Напоминание: случайная величина это просто измеримая функция от ω. Мы уже построили целое

семейство случайных величин ⟨ω, ξ⟩, ξ ∈ S(R), но даже для самых обычных бытовых нужд этого

мало. Хочется уметь работать с произвольными измеримыми функциями F (ω). Для этого хочется

построить какой-то базис (L2).

11. Обычно обобщёнными функциями можно действовать только на основные. Так как точка вероятностного

пространства ω ∈ Ω = S ′(R) это обобщённая функция, априори мы умеем действовать ей только на

ξ ∈ S(R). Мы сейчас научимся действовать ими на элементы из L2(R). Пусть ξn ∈ S(R) сходится к

f ∈ L2(R). Определим

⟨ω, f⟩ := lim
n→∞

⟨ω, ξn⟩ в L2(S ′(R), µ).

Этот предел не зависит от последовательности (следует из изометрии выше). Более того, ⟨ω, f⟩ это

случайная величина с распределением N(0, |f |20).
12. Например, пусть f = 1[0,t]. Тогда

Bt(ω) := ⟨ω,1[0,t]⟩

это броуновское движение. Действительно,

EBtBs = E⟨ω,1[0,t]⟩⟨ω,1[0,s]⟩ = ⟨1[0,t],1[0,s]⟩L2(R) = min{t, s}.

13. По теореме Колмогорова о непрерывности, существует непрерывная версия этого процесса, которую

мы впредь будем называть B.

14. Следствие из определения BM с индикатором:

⟨ω, f⟩ =
∫

R
f(t) dB(t) для всех неслучайных f ∈ L2(R).

15. Напоминание: мы расширяем класс случайных величин. Пока мы построили ⟨ω, f⟩, f ∈ L2(R). Но

например F (ω) = maxt∈[0,t]Bt(ω) не представляется в виде F (ω) = ⟨ω, g⟩ с какой-то g. Зато у нас

есть степени ⟨ω, f⟩n, n ≥ 0. Попробуем развить эту мысль.

16. То куда мы дальше будем двигаться требует изучения кратных интегралов. Пусть L̂2(Rn) это

симметричные неслучайные функции f ∈ L2(Rn). Определим

In(f) :=

∫
Rn

f(t) dB⊗n(t) =

∫
R
dB(t1)

∫ t1

−∞
dB(t2) · · ·

∫ tn−1

−∞
dB(tn) f(t1, . . . , tn).

Интерес к кратным интегралам связан с тем, что любая F ∈ (L2) раскладывается в ряд по ним:
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Первая теорема Винера-Ито. Для любой F ∈ (L2) существует последовательность {fi ∈ L̂2(Rn)}
такая чтобы

F (ω) =

∞∑
n=0

In(fn), причём EF 2 =

∞∑
n=0

n! ∥fn∥2L2(Rn).

17. Отступление. Отображение переводящее вектор f = (fn)n≥0 ∈
⊗

n≥0 L̂
2(Rn) в F =

∑
n≥0 In(fn)

называется изоморфизм Ито-Винера-Сегала. Оно отождествляет (L2) с бозонным (= симметричным)

пространством Фока.

18. В этом пространстве есть очень естественный базис функций, близко связанный с гауссовским распределением:

функции Эрмита

hn(x) = (−1)nex
2/2 d

n

dxn
e−x2/2, ξn(x) = π−1/4((n− 1)!)−1/2hn−1

(
x
√
2
)
e−x2/2.

Соорудим из них базис в (L2):

Hα(ω) =

n∏
i=1

hαi
(⟨ω, ξi⟩).

Сравни с замечанием выше про ⟨ω, f⟩n: мы рассматриваем многочлены от ⟨ω, ξi⟩.
19. Отступление. Многочлены Эрмита можно определить более красиво при помощи оператора δ:

δφ(x) := xφ(x)− φ′(x), hn = δn1.

Этот оператор называется иногда дивергенцией или интегралом Скорохода. В физике его называют

оператором рождения и обозначают a† (см. квантовый гармонический осциллятор). Важность этого

оператора с точки зрения теории гауссовских процессов связана с тем что он сопряжён относительно

гауссовской меры обычной производной:

X ∼ N(0, 1), φ, ψ ∈ C1(R) =⇒ Eψ′(X)φ(X) = Eψ(X) (δφ)(X).

От этой простой проверяемой руками формулы отправляется исчисление Маллявэна, аналог

бесконечномерного вариационного исчисления относительно гауссовской меры. Мы введём несколько

понятий из этой теории ниже.

20. Можно показать что Hα(ω) =

∫
R|α|

ξ⊗̂α dB⊗|α|, где ⊗̂ это симметризованное тензорное произведение.

Это результат Ито. Это же равенство можно интерпретировать образом который потребуется нам

в дальнейшем: In(ξ⊗̂α) = Hα. То есть In делает из базиса {ξi} в L2 базис {Hα} в (L2). Мы будем

пользоваться этим свойством чтобы определить In в другом контексте.

21. Вторая теорема Винера-Ито. Для любой F ∈ (L2) существует единственный набор констант cα
такой что

F (ω) =
∑
α

cαHα(ω), причём EF 2 =
∑
α

c2αα!

22. Итак, мы что-то сказали для F ∈ (L2): научились раскладывать их по базису из многочленов от

элементарных случайных величин ⟨ω, ξi⟩.
23. Пример. Разложение броуновского движения:

Bt(ω) = ⟨ω,1[0,t]⟩ =

〈
ω,

∞∑
k=1

⟨1[0,t], ξk⟩L2(R) ξk(·)

〉
=

∞∑
k=1

⟨1[0,t], ξk⟩L2(R) ⟨ω, ξk⟩.

4. Пространство Хида и умножение Вика

1. Идея: можно задать много разных пространств в терминах скорости убывания/роста коэффициентов

cα в разложении ∑
α

cαHα(ω).
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2. Пусть γ мультииндекс длины m. Введём такое обозначение:

(2N)γ = (2 · 1)γ1 · (2 · 2)γ2 · . . . · (2 ·m)γm .

3. Пространство Хида пробных функций, обозначается (S), это все такие ψ ∈ (L2) что

ψ(ω) =
∑
α

aαHα(ω), причём ∀ k = 1, 2, . . . :
∑
α

a2αα!(2N)kα <∞.

4. Пространство Хида обобщённых функций, обозначается (S)∗, это формальные суммы

G(ω) =
∑
α

bαHα(ω), такие что ∃ q <∞ :
∑
α

bαα!(2N)−qα.

5. На (S) заводим проективную топологию, на (S)∗ индуктивную. Получилась новая гельфандова

тройка (S) ⊂ (L2) ⊂ (S)∗.
6. Напоминание:

• Проективная топология это Fn → F ⇐⇒ ∥Fn − F∥k → 0 для всех k.

• Индуктивная топология: Fn → F ⇐⇒ ∥Fn − F∥−q → 0 для какого-то q.

7. Сейчас мы перечислим несколько свойств и введём серию естественных операций над обобщёнными

функциями Хида.

8. Двойственность (S) и (S)∗ в терминах коэффициентов:

⟨F, f⟩ =
∑

α! aαbα.

9. Матожидание на (S)∗ определяется так:

E
{∑

bαHα

}
= b0.

Это определение согласуется с обычным потому что E{Hα} = 0 для всех α ̸= 0.

10. Согласованность. Если G ∈ (L2) ⊂ (S)∗ и ψ ∈ (S), то ⟨G,ψ⟩ = EGψ.

11. Интегрирование в (S)∗. Пусть Z : R → (S)∗ это какая-то функция удовлетворяющая свойству

∀ψ ∈ (S) : ⟨Z(t), ψ⟩ ∈ L2(R).

Тогда
∫

R
Z(t) dt определяется соотношением

∀ψ ∈ (S) :
〈∫

R
Z(t) dt, ψ

〉
=

∫
R
⟨Z(t), ψ⟩ dt .

12. Пример. Производная броуновского движения это элемент (S)∗:

d

dt
B(t) =

d

dt

∞∑
k=1

∫ t

0

ξk(s) ds ⟨ω, ξk⟩ =
∞∑
k=1

⟨ω, ξk⟩ ξk(t) =
∞∑
k=1

Hεk(ω) ξk(t),

где (εk)i = δki.

13. Производные по направлению. Каждый элемент F ∈ (S) дифференцируем:

DhF (ω) = lim
ε→0

F (ω + εh)− F (ω)

ε
, h ∈ S ′(R).

• Dt := Dδt , где δt ∈ S ′(R) это обычная δ-функция, называется производной Хиды-Маллявэна.

• Другая запись того же самого:

ψ(t) = DtF ⇐⇒ ∀h ∈ S(R) : DhF =

∫
R
ψ(t)h(t) dt .

• Важный пример.

F (ω) = ⟨ω, f⟩ =
∫

R
f(t) dBt =⇒ DtF (ω) = f(t).

• Ещё один важный пример. DtF = 0 ⇐⇒ F не случайно.
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• Производная Маллявэна обладает всеми хорошими свойствами типа формулы дифференцирования

композиции Dtφ(F ) = φ′(F )DtF или формулы интегрирования по частям (будет ниже).

• Производную Маллявэна можно доопределить с (L2) на (S)∗:

F =
∑

cαHα =⇒ DtF =
∑

cααkek(t)Hα−ϵk ,

где εk это мультииндекс состоящий из нулей и одной единицы на k-ом месте.

• Итак, мы задали Dt : (S) → (S) и Dt : (S)∗ → (S)∗.
• Если F это гладкий цилиндрический функционал, то есть

F = F (⟨ω, h1⟩, . . . , ⟨ω, hn⟩), hj ∈ L2(R), F ∈ C1(Rn,R),

то производная Маллявэна очень просто вычисляется:

DtF =
∑ ∂F

∂xj
Dt⟨ω, hj⟩ =

∑ ∂F

∂xj
hj(t).

• На самом деле производную Маллявэна можно определить этим равенством на цилиндрических

функционалах, доказать что так определённый оператор D является замыкаемым оператором

(L2) → L2(µ,L2(R)), то есть

Fn
(L2)−−−→ 0, DFn

L2(µ,L2(R))−−−−−−−−→ η =⇒ η = 0.

И просто замкнуть его. Область определения получившегося оператора обозначаетсяW 1
2 (S ′(R), µ)

и называется классом Соболева по мере µ.

• Аналогично вводятся производные Маллявэна старших порядков и строятся классы Соболева

W q
p (S ′(R), µ).

14. Обычные обобщённые функции нельзя умножать. Теория белого шума позволяет придать смысл не

только таким объектам как Ḃ(t) Ḃ(s), но и, например, exp(Ḃ). Это делается при помощи ренормализации

или умножения Вика. Важно заметить, что это умножение не совпадает с обычным даже там, где оба

определены. Тем не менее, это умножение вполне естественное с точки зрения теории белого шума.

15. Говорят, что ренормализация в физике эквивалентна ренормализации в теории белого шума. К

сожалению, я ничего не знаю о ренормализации в физике и не могу это никак прокомментировать.

16. Умножение Вика. На (S)∗ удобно ввести вот такое умножение:

(F1 ⋄ F2)(ω) :=
∑

c(1)α c
(2)
β Hα+β(ω),

где c(1)α и c(2)α это коэффициенты разложения F1 и F2.

17. Функциональное исчисление. Определим степени:

F ⋄n(ω) := F (ω) ⋄ F (ω) ⋄ . . . ⋄ F (ω)
n раз

.

При помощи степеней определим полиномы:

p(x) =
∑

akx
k =⇒ p⋄(F (ω)) :=

∑
akF

⋄k(ω).

Точно так же можно определить функции со сходящимися рядами.

18. Экспонента Вика. Важный пример:

exp⋄(F (ω)) :=
∑ F ⋄k(ω)

k!
.

• exp⋄(F +G) = exp⋄(F ) ⋄ exp⋄(G).
19. Свойства умножения Вика.

• ⋄ : (S)× (S) → (S) и ⋄ : (S)∗ × (S)∗ → (S)∗.
• Но из F,G ∈ (L2) вообще говоря не следует что F ⋄G ∈ (L2).
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• F неслучайная =⇒ F ⋄G = F ·G, то есть совпадает с обычным умножением.

• ⟨ω, f⟩⋄n = hn(⟨ω, f⟩) для ∥f∥2 = 1.

•
∫
f dB(t) ⋄

∫
g dB(t) =

∫
f dB(t) ·

∫
g dB(t)−⟨f, g⟩L2(R), где f , g неслучайные

• EF ⋄G = EF · EG для всех случайных величин, а не только независимых.

• =⇒ E exp⋄(X) = exp(EX).

• B⋄2(t) = B2(t)− t.

• Если F это Ft-измеримая случайная величина, то F ⋄ (Bt+h −Bt) = F · (Bt+h −Bt).

20. Связь с интегралом Ито. Если φ это Ft-адаптированный процесс такой что E
∫
φ2 dt <∞, то∫

φ(t) dBt =

∫
φ(t) ⋄ Ḃ(t) dt .

21. Пример. ∫ T

0

B(t) dB(t) =

∫ T

0

B(t) ⋄ Ḃ(t) dt =
1

2
B⋄2(T ) =

1

2
(B2(T )− T ).

22. Интеграл Скорохода можно определить как расширение интеграла Ито при помощи предыдущей

формулы: если Y это (S)∗-значный и не обязательно адаптированный процес, то∫
Y (t) δBt :=

∫
Y (t) ⋄ Ḃ(t) dt .

23. Предостережение: расширения интеграла Ито за пределы адаптированных процессов часто не

удовлетворяют естественным свойствам. Например,∫ T

0

X · Y (t) δBt ̸= X ·
∫ T

0

Y (t) δBt .

Хотя похожее свойство с умножением Вика верно:∫ T

0

X ⋄ Y (t) δBt = X ⋄
∫ T

0

Y (t) δBt .

С другой стороны, у интеграла Скорохода так же как у интеграла Ито есть такие важные свойства

как теорема о мажорированной сходимости.

24. Основная теорема стохастического исчисления.

Dt

∫
φ(s) dBs = φ(t) +

∫
Dtφ(s) dBs .

• Докажем это. Так как Ḃ(t) =
∑
ξj(s)Hεj , где εj это мультииндекс состоящий из нулей и единицы

на j-ом месте, а также φ(s) =
∑
cβ(s)Hβ с какими-то коэффициентами cβ(s), получим

Dt

∫
φ(s) ⋄ Ḃ(s) ds = Dt

∑
β,j

cβ(s)ξj(s)Hβ+εj ds =
∑
β,j

(DtHβ+εj )

∫
cβ(s)ξj(s) ds

=
∑
β,j,k

(βk + (εj)k)ξk(t)Hβ+εj−εk⟨cβ , ξj⟩

=

∫ (∑
βkcβ(s)ξk(t)Hβ−εk

)
⋄
(∑

ξjHεj

)
ds

+
∑

δjkξk(t)Hβ+εj−εk⟨cβ , ξj⟩

=

∫
Dtφ(s) ⋄ Ḃ(s) ds+

∑
cβHβ =

∫
Dtφ(s) ⋄ Ḃ(s) ds+φ(t).

25. Формула интегрирования по частям.

F ⋄
∫
φ(t) dBt = F

∫
φ(t) dBt −

∫
φ(t)DtF dt .
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26. Всё это верно не только для интегралов адаптированных процессов, но и для интеграла Скорохода

от неадаптированных процессов, то есть∫ T

0

Fφ(t) δBt = F

∫ T

0

φ(t) δBt −
∫
φ(t)DtF dt .

Если взять матожидание, получится

E

{
F

∫ T

0

φ(t) δBt

}
= E

{∫
φ(t)DtF dt

}
.

Эту формулу часто интерпретируют так: Dt и интеграл Скорохода δ являются сопряжёнными друг

другу операторами. На самом деле эта формула не просто аналог, а прямое следствие формулы

Eψ′(X)φ(X) = Eψ(X)(δφ)(X), δφ(x) = xφ(x)− φ′(x),

которую мы видели выше.

27. Чтобы увидеть связь с производной Маллявэна более явно, мы можем обобщить определение δ

следующим образом: теперь это будет оператор действующий на функции Rd → Rd по правилу

δφ(x) = ⟨x, φ(x)⟩ − divφ(x).

То есть δ : C1(Rd,Rd) → C(Rd, R). Этот оператор сопряжён оператору ∇:

E⟨∇ψ,φ⟩ = Eψ δφ.

Производная Маллявэна обобщает этот результат ещё на один шаг: если ψ ∈ (S) и φ : R → (S), то

E⟨Dψ,φ⟩ = Eψ δφ.

В принципе, можно взять эту формулу за определение δ: просто оператор, сопряжённый к производной

Маллявэна. Попробуем найти явную формулу для δ на цилиндрических процессах

φ(t) =

n∑
j=1

φjhj(t), φj = Φj(⟨ω, h1⟩, . . . , ⟨ω, hn⟩).

Предположим, что ψ это цилиндрический функционал зависящий от того же самого набора случайных

величин ⟨ω, hj⟩, j = 1, . . . , n

ψ = Ψ(⟨ω, h1⟩, . . . , ⟨ω, hn⟩),

и предположим ещё что набор hj ортонормированный. ТогдаDtψ легко вычислить пользуясь формулой

для дифференцирования композиции

Dtψ =

n∑
j=1

∂Ψ

∂xj
Dt⟨ω, hj⟩ =

n∑
j=1

∂Ψ

∂xj
hj(t).

Подставляем это в E⟨Dψ,φ⟩:

E⟨Dψ,φ⟩ =
∑
j,k

∫
E

{
φj

∂Ψ

∂xk

}
hj(t)hk(t) dt =

∑
j

E

{
φj

∂Ψ

∂xj

}

=
∑
j

E

{
Ψ

(
⟨ω, hj⟩φj −

∂φj

∂xj

)}
= E {Ψ(⟨ω, φ⟩ − divφ)}

Итак, мы получили формулу для действия δ на цилиндрических функционалах:

δφ = ⟨ω, φ⟩ − divφ,
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но непонятно как замкнётся div при расширении класса функционалов с цилиндрических на все.

Идея: переписать ответ в терминах чего-то что мы уже умеем замыкать: в терминах производной

Маллявэна:

divφ =
∑
j

∂φj

∂xj
=
∑
j

∫
∂φj

∂xj
hj(t)hj(t) dt =

∑
j

∫
Dtφj · hj(t) dt = ⟨Dφ, h⟩L2(R,Rn).

Итак,

δφ = ⟨ω, φ⟩ − ⟨Dφ, h⟩L2(R,Rn).

Эта последняя формула верна и без предположения о том что hj ортонормированный набор.

28. Пусть φ это элементарный процесс:

φ(t) =

n∑
j=1

φj1{t ∈ (tj , tj+1]}.

Тогда

δφ =
∑

φj⟨ω,1(tj ,tj+1]⟩ −
∑∫ tj+1

tj

Dtφj dt

Так как

⟨ω,1(tj ,tj+1]⟩ = Btj+1
(ω)−Btj (ω),

первое слагаемое в формуле выше это интеграл Ито:∑
φj⟨ω,1(tj ,tj+1]⟩ =

∫
φ(t) dBt .

Второе слагаемое это непонятно что. Но если процесс φ адаптированный, то есть φj ∈ Ftj , то

по свойству локальности производной Маллявэна Dtφj = 0. Следовательно, для адаптированных

процессов φ интеграл Скорохода δ совпадает с интегралом Ито:

δφ =

∫
φ(t) dBt .

5. Теоремы Гливенко и Леви

1. Пусть µ это какая-то борелевская мера на S ′(R). Обозначим

φ(ξ) =

∫
S′(R)

ei⟨ω,ξ⟩ dµ(ω) .

Тогда

φ(0) = 0, φ непрерывная, φ ≽ 0.

2. Последовательность вероятностных мер µn сходится ∗-слабо к µ если

lim
n→∞

∫
S′(R)

F (ω) dµn(ω) =

∫
S′(R)

F (ω) dµ(ω)

для всех непрерывных ограниченных F .

3. Теорема Гливенко. Если µn
∗w−−→ µ, то φn(ξ) → φ(ξ) для всех ξ. Обратно, если φn(ξ) → φ(ξ),

причём известно что что φ это не просто какая-то функция, а характеристическая функция меры µ,

то µn
∗w−−→ µ.

4. Теорема Леви. Если limn→∞ φn(ξ) существует для всех ξ, причём предельная функция φ(ξ) непрерывна

в нуле, то µn
∗w−−→ µ, где µ определяется при помощи φ.
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5. Эта теорема даёт ещё один способ строить меры на S ′(R). Пусть ν это какая-то мера на {−1, 1}Z.

Рассмотрим отображения

fn : {−1, 1}Z → S ′(R) : x = (xk, k ∈ Z) 7→ L−n/2
∑
k∈Z

xkδL−nk.

Рассмотрим семейство мер на S ′(R), которое несут с собой эти отображения:

µn := fn,∗ν = ν ◦ f−1
n,∗.

Чтобы доказать что µn имеют ∗-слабый предел µ, можно воспользоваться теоремой Леви и доказать

сходимость характеристических фунций φn → φ поточечно плюс непрерывность φ в нуле.

6. Этот подход позволяют строить меры в обход теоремы Бохнера-Минлоса.

6. Пространства Хида через оператор вторичного квантования

1. Сейчас мы повторим то что обсуждали выше на новом языке. Объекты получатся те же самые,

но изменится наш взгляд на них. Этот новый взгляд будет удобным для обобщения, которое мы

рассмотрим дальше.

2. Рассмотрим оператор A = − d2

dx2
+ x2 + 1. Вот краткий список его свойств:

• Плотноопределённый в L2(R).

• Функции Эрмита – его собственные: Aξn = (2n+ 2)ξn.

• A−1 ограничен, ∥A−1∥ = 1
2 .

• При p > 1/2, A−p это оператор Гильберта-Шмидта:

∥A−p∥2HS =

∞∑
n=0

(2n+ 2)−2p.

• Это гамильтониан гармонического осциллятора.

3. Определим норму: |f |p := |Apf |0. Эквивалентно:

|f |2p =

∞∑
n=0

(2n+ 2)2p⟨f, ξn⟩2.

Определим Sp(R) := {f ∈ L2(R) : |f |p <∞}.
4. Очевидно, что это гильбертова норма!

5. Утверждение.

• S(R) =
⋂
p≥0

Sp(R)

• Пусть | · |n,k полунормы в S(R) которые мы определяли выше:

|ξ|2n,k =

∫
R
|xnξ(k)(x)|2 dx .

Тогда топология порождённая семейством {| · |n,k} совпадает с топологией порождённой | · |p
• S(R) это ядерное пространство, то есть Sp+1(R) ↪→ Sp(R) это оператор Гильберта-Шмидта.

• |f |−p = |A−pf |0 это норма в S ′
p(R).

• S(R) ⊂ Sp(R) ⊂ L2(R) ⊂ S ′
p(R) ⊂ S ′(R)

• S ′
p(R) это пополнение L2(R) по норме | · |−p.

6. Научимся действовать оператором A на F ∈ (L2):

F (ω) =
∑

In(fn) =⇒ Γ(A)F (ω) :=

∞∑
n=0

In
(
A⊗nfn

)
.

Это определение оператора Γ(A). Он называется оператором вторичного квантования.

7. Свойства оператора вторичного квантования Γ(A).
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• Γ(A) плотноопределён в (L2).

• существует ортонормированный базис (L2) из собственных функций Γ(A)

• Γ(A)−1 это ограниченный оператор, причём ∥Γ(A)−1∥ = 1.

• Γ(A)−p это оператор Гильберта-Шмидта при p > 1.

8. Пространство пробных функций Хиды (bis). Определим пространства (Sp), (S):

∥φ∥p := ∥Γ(A)pφ∥0, (Sp) := {φ ∈ (L2) : ∥φ∥p <∞}, (S) = projlim
p≥0

(Sp).

9. Тогда (S) автоматически оказывается ядерным пространством.

10. Пространство обобщённых функций Хиды (bis). (S)∗, сопряжённое к (S).
11. Вот такие вложения:

(S) ⊂ (Sp) ⊂ (L2) ⊂ (Sp)
∗ ⊂ (S)∗.

12. Можно показать что (S)∗ =
⋃
p≥0

(Sp)
∗ и ∥Φ∥−p = ∥Γ(A)−pΦ∥0.

13. Пример. Вычислим норму Ḃ(t):

Ḃt = ⟨ω, δt⟩ =⇒ ∥Ḃt∥ = |A−pδt|0.

Так как δt =
∑∞

n=0 ξn(t) ξn,

|A−pδt|20 =

∞∑
n=0

(2n+ 2)−2pξn(t)
2.

Так как supt∈R |ξn(t)| = O(n−1/12), получаем p >
5

12
=⇒ |δt|−p <∞.

Можно показать, что B(k)(t) ∈ (Sp)
∗ при p >

5

12
+
k − 1

2
.

7. Ренормализация

1. Возведение в квадрат.

• Если f ∈ S(R), то ⟨·, f⟩2 это корректно определённый элемент (S).
• Если f ∈ L2(R), то ⟨·, f⟩2 это корректно определённый элемент (L2).

• Если f ∈ S ′(R), то ⟨·, f⟩2 не определено, потому что ⟨·, f⟩ это обобщённая функция из (S)∗, а

квадраты обобщённых функций не определены.

2. Чтобы определить его, посмотрим как он выглядит для f ∈ L2(R):

⟨·, f⟩2 =
(
⟨·, f⟩2 − ⟨f, f⟩

)
+ ⟨f, f⟩ = I2(f

⊗2) + ⟨f, f⟩.

Заметим, что ⟨f, f⟩ не определено для f ∈ S ′(R), тогда как I2(f⊗2) определено. Определим ренормализацию

⟨·, f⟩2 для f ∈ S ′(R) просто выкидывая эту “расходящуюся” (не определённую) часть:

:⟨·, f⟩2: def
= I2(f

⊗2).

Тогда ∥∥:⟨·, f⟩2:∥∥−p
=

√
2
∣∣(A−p)⊗2f⊗2

∣∣
0
=

√
2|f |2−p.

3. Пример. Пусть f = δt, тогда ⟨·, δt⟩ = Ḃt. Значит :Ḃ2
t : = I2(δ

⊗2
t ).

4. Более общо, определим

:⟨·, f⟩n: def
= In(f

⊗n).

На самом деле это тот же самый объект что мы уже определили выше:

:⟨·, f⟩n: = ⟨·, f⟩⋄n.
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8. Белый шум относительно других ренормировочных операторов

1. В этом параграфе мы построим другие гельфандовы тройки (X) ⊂ (L2) ⊂ (X)∗ при помощи той

же техники которую мы использовали в предыдущем параграфе. Соответствующий аналог в теории

обобщённых функций это обобщённые функции медленного роста и другие классы.

2. Пусть E сепарабельное гильбертово пространство, | · |0 его норма. Пусть A это такой оператор, что

существует базис ζj в E такой что

• Aζj = λjζj

• 1 < λ1 ≤ λ2 ≤ . . .

•
∑
λ−α
j <∞ для какого-то α > 0

Тогда

• A−1 ограничен, ∥A−1∥ = 1
λ1

• (A−1)α/2 это оператор Гильберта-Шмидта, причём
∥∥∥(A−1)α/2

∥∥∥2
HS

=
∑

λ−α
j <∞.

3. Пространство пробных функций белого шума для A.

Определим норму |ξ|p := |Apξ|0 и пространство

Ep = {ξ ∈ E : |ξ|p <∞}.

Тогда

• Ep ⊂ Eq при p ≥ q

• Ep+α/2 ↪→ Ep это опрератор Гильберта-Шмидта

4. Определим

E := projlimp≥0 Ep, E ′ двойственное к E .

5. Итак, мы построили гельфандову тройку E ⊂ E ⊂ E ′, причём E ядерное по построению, а значит по

теореме Бохнера-Минлоса существует единственная вероятностная мера µ на E ′ такая что∫
E′
ei⟨ω,ξ⟩ dµ(ω) = e

1
2 |ξ|0 .

6. Сейчас нам потребуется аналог In в этом контексте. Определим его так. Пусть hn это многочлены

Эрмита, а ξn это функции Эрмита. Точно такие же как выше. Пусть ⊗̂ это симметризованное

тензорное произведение. Тогда

ζ =
⊗̂
i

ζ⊗̂ni
i ,

∑
ni = n =⇒ In(ζ) =

∏
hn(⟨ω, ξi⟩).

Более короткая запись: In(ζ⊗α) = Hα(ω).

7. (L2) и оператор вторичного квантования.

Пусть (L2) := L2(E ′, µ). Тогда по первой теореме Винера-Ито для любого F ∈ (L2) есть вот такое

представление:

F =
∑

In(fn), fn ∈ L̂2(Rn), ∥F∥20 =
∑

n!|fn|20.

Здесь ∥·∥0 это норма в (L2). Это позволяет снова определить оператор вторичного квантования Γ(A):

Γ(A)F =
∑

In
(
A⊗nfn

)
.

8. Оператор Γ(A) наследует все свойства оператора A:

• φα = In(ζ
⊗α)/

√
α! это ортонормированный базис в (L2)

• Γ(A)φα = λαφα, где λα =
∏
i

λαi
i .

• Γ(A) обратим.
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• (Γ(A)−1)α/2 это оператор Гильберта-Шмидта, причём∥∥∥(Γ(A)−1
)α/2∥∥∥2

HS
=
∏(

1− λ−α
j

)−1
.

9. Определим ∥φ∥p = ∥Γ(A)p φ∥0, (Ep) = {φ ∈ (L2) : ∥φ∥p <∞}.
10. Наконец, определим пространства Хиды:

(E) := projlimp≥0(Ep), (E)∗ двойственное к (E).

11. (E) ядерное, имеют место включения (E) ⊂ (Ep) ⊂ (L2) ⊂ (Ep)∗ ⊂ (E)∗.
12. (E)∗ совпадает с замыканием (L2) по ∥φ∥−p = ∥Γ(A)−pφ∥0.
13. Пример. E = L2(T, ν), где T это топологическое пространство, а ν это σ-конечная борелевская мера

на нём.

9. Несколько примеров к теореме Бохнера-Минлоса

1. Это ещё одно небольшое отступление. Теорему Бохнера-Минлоса конечно можно применять не только

к функции

C(ξ) = exp

(
−1

2
|ξ|20
)
.

2. Пример. Пусть E = L2(U), где U достаточно приличная ограниченная область. Пусть ∆ это

оператор Лапласа с условиями Дирихле на ∂U . Тогда A = −∆ удовлетворяет всем условиям выше,

система гильбертовых полунорм |f |p = |(−∆)−p/2f |0 удовлетворяет всем перечисленным условиям, а

значит на S ′(R) существует мера µ такая что∫
S′(R)

ei⟨ω,ξ⟩ dµ(ω) = exp

(
−1

2
⟨ξ, (−∆)−1ξ⟩

)
.

3. Пример: гауссово свободное поле. Пусть m > 0 интерпретируется как масса, ∆ это обычный

оператор Лапласа в Rd. Тогда мы можем определить меру µ такую что∫
S′(R)

ei⟨ω,ξ⟩ dµ(ω) = exp

(
− 1

2(2π)d

∫
Rd

|ξ̂(p)|2

p2 +m2
dp .

)
Иначе говоря, в экспоненте стоит ⟨ξ, (−∆ + m2)−1ξ⟩. Эта мера называется гауссовым свободным

полем, с ней много работают в конструктивной теории поля. В физической литературе можно

встретить запись

dµ(φ) = N exp

(
−1

2

∫
Rd

φ(x)(−∆+m2)φ(x) dx

)
Dφ,

где N нормировочная константа, Dφ это бесконечномерная мера Лебега на пространстве полей.

Опять же, ни один из этих объектов (ни нормировка, ни мера Лебега, ни интеграл в экспоненте) не

существуют. Тем не менее, формальные манипуляции с этой формулой дают правильные ответы.

4. Пример. Пусть R(x, y) это невырожденная непрерывная положительно определённая функция на

Rn × Rn. Тогда при некоторых условиях на R существует мера µ на пространстве C0(R) = {f ∈
C(R) : f(0) = 0} такая что∫

C0(R)

exp

(
i

∫
ω(t) ν(dt)

)
dµ(ω) = exp

(
−1

2

∫∫
R(s, t) ν(ds) ν(dt)

)
для всех мер ν с компактным носителем.

5. Подпример к предыдущему примеру. Мера Винера на C0(R) характеризуется свойством∫
C0(R)

exp

(
i

∫
ω(t) ν(dt)

)
dµ(ω) = exp

(
−1

2

∫∫
min{s, t} ν(ds) ν(dt)

)
6. Следующие два примера порождают не гауссовские меры.
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7. Пример: белый шум Леви. Пусть Ψ это показатель в экспоненте в формуле Леви-Хинчина:

Ψ(x) =

∫
R

(
eixt − 1− ixt

)
ν(dt) .

Здесь ν это мера на R удовлетворяющая условию∫
R
t2 ν(dt) <∞.

Положим

C(ξ) = exp

(∫
R
Ψ(ξ(x)) dx

)
, ξ ∈ S ′(R).

Тогда C(0) = 1, C непрерывна в нуле и C ≽ 0. По теореме Бохнера-Минлоса, существует вероятностная

мера µ на пространстве S ′(R) такая что∫
S′(R)

ei⟨ω,ξ⟩ dµ(ξ) = C(ξ).

Пространство (S ′(R), µ) называется пространством белого шума Леви.

8. На пространстве белого шума Леви верно много таких же свойств как на классическом пространстве

белого шума:

E⟨·, ξ⟩ = 0, E⟨·, ξ⟩2 = K

∫
ξ2(y) dy, где K =

∫
t2 ν(dt) .

Наконец, ⟨ω, ξ⟩ можно доопределить на ξ ∈ L2(R) по изометрии и тогда

X(t) = ⟨ω,1[0,t]⟩

это процесс Леви.

9. Ещё одно пространство белого шума можно получить рассматривая функцию Миттага-Леффлера

Lλ(t) =

∞∑
n=0

(−t)n

Γ(1 + λn)
.

Можно показать что ξ 7→ Lλ(|ξ|20) тоже положительно определена и удовлетворяет теореме Бохнера-

Минлоса, а значит существует такая вероятностная мера µ на S ′(R) что∫
S′(R)

ei⟨ω,ξ⟩ dµ(ω) = Lλ(|ξ|20).

Эта конструкция называется пространством серого шума.

10. В книге Гельфанда & Виленкина есть теорема, которая говорит что

C(ξ) = exp

(∫
R
f(ξ(x)) dx

)
положительно определена тогда и только тогда, когда x 7→ esf(x) положительно определена для всех

x > 0.
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10. S- и T-преобразования

1. S и T -преобразования определяются для φ ∈ (L2) формулами

Sφ(h) =

∫
S′(R)

φ(ω + h) dµ(ω) и Tφ(h) =

∫
S′(R)

φ(ω) ei⟨ω,h⟩ dµ(ω) .

2. Оба преобразования можно продолжить на (S)∗.
3. Теорема Потхоффа-Стрейта характеризует (S)∗ в терминах S- и T -преобразований.

• Будем говорить что F : S(R) → C это U-функционал, если

– Для любых ξ, η ∈ S(R) отображение

λ 7→ F (η + λξ), λ ∈ R

продолжается до целой функции F (η + zξ), z ∈ C.

– Существует p ∈ N такое, что целая функция z 7→ F (zξ) удовлетворяет неравенству

sup
|z|≤r

|F (zξ)| ≤ eCr2

для |ξ|2,p ≤ 1 и достаточно больших r.

• Тогда F это U-функционал ⇐⇒ F это S-преобразование распределения Хиды ⇐⇒ F это

T -преобразование распределения Хиды.

4. Следствие. U-функционалы образуют алгебру относительно обычного произведения в C.

5. Следствие. Можно определить два произведения на (S∗):

φ ⋄ ψ = S−1(Sφ · Sψ) и φ ∗ ψ = T−1(Tφ · Tψ).

• Первое из двух мы уже видели, это просто ⋄!
• Единица первого умножения это 1, единица второго это δ0.

6. Преобразование Фурье-Куо. F = S−1T . Переводит свёртку в произведение Вика и обратно.

Обозначение: Fφ = φ̂.

7. Следствие. У произведений ⋄ и ∗ нет делителей нуля среди распределений Хиды.

8. Дельта-функция Донскера это

F (ω) = δ(Bt(ω)− a), a ∈ R.

Это корректно определённое распределение из (S)∗. Вот его S-преобразование

SF (f) =
1√
2πt

exp

(
− 1

2t

(∫ t

0

ξ(s) ds−a
)2
)
.

При помощи дельта-функции Донскера можно определить локальное время

L(t, a) =

∫ t

0

δ(Bs − a) ds .
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1. Оператор следа τ это элемент (E ′)⊗̂2 такой что ⟨τ, ξ ⊗ η⟩ = ⟨ξ, η⟩ для всех ξ, η ∈ E .

2. Пусть ζj это собственные функции оператора A. Тогда оператор следа можно представить в виде

τ =

∞∑
j=1

ζj ⊗ ζj .

Действительно,

⟨τ, ξ ⊗ η⟩ =
∞∑
j=1

⟨ζj ⊗ ζj , ξ ⊗ η⟩ =
∞∑
j=1

⟨ζj , ξ⟩⟨ζj , η⟩ = ⟨ξ, η⟩.

В последнем переходе мы воспользовались равенством Планшереля.

3. Это позволяет вычислить норму оператора следа:

|τ |2−p =

∞∑
j=1

∣∣(A−p)⊗2(ζj ⊗ ζj)
∣∣2
0
=

∞∑
j=1

|A−pζj |40 =

∞∑
j=1

λ−4p
j .

Эта норма конечна при p ≥ α/4, где α это число из определения оператора A. Отсюда следует что

τ ∈ (E ′
p)

⊗̂2 при p ≥ α/4.

4. Нам потребуется
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