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Введение

Пусть ξx(t) – это однородный марковский процесс со значениями в Rd с услови-
ем ξx(0) = x, переходная функция P (t,x, A) которого порождает C0-полугруп-
пу T t : C0(Rd)→ C0(Rd), где

(T tf)(x) =

∫
A

f(y)P (t,x, dy) = Ef(ξx(t)).

Такие процессы называются феллеровскими. Это весьма широкий класс,
при этом обладающий многими хорошими свойствами, выгодно отличающими
его от общего случая марковского процесса. Полугруппа однозначно определя-
ется своим генератором

L = lim
t→0+

T t − I
t

.

Именно, полугруппа T t сопоставляет функции ϕ решение задачи Коши

ut = Lu (0.1)

с начальным условием u|t=0 = ϕ. Таким образом, всякий однородный фелле-
ровский процесс даёт интегральное представление решения задачи Коши (0.1).
При этом семейство его одномерных распределений есть фундаментальное ре-
шение задачи (0.1).

Класс процессов, который фактически будет рассматриваться, это класс
симметричных процессов Леви. В этот класс входит как процесс броуновского
движения с генератором

L =
1

2
∆,

так и класс скачкообразных процессов Леви с мерой Леви Π, имеющей конеч-
ный второй момент и инвариантной относительно вращений. В этом случае
генератор соответствующей полугруппы имеет вид

− Lf(x) =

∫
Rd

(
f(x + y)− f(x)− f ′(x) · y

)
dΠ(y) (0.2)

с ядром C∞c (Rd) ⊂ D(L), −L ≥ 0, где C∞c (Rd) – это множество бесконечно-
дифференцируемых функций на Rd с компактным носителем.

Сам процесс ξ(t) мы будем называть свободным, имея в виду, что его полу-
группа T t сопоставляет функции ϕ решение задачи Коши ut = Lu с начальным
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условием u|t=0 = ϕ. Отметим, что введённый термин “свободный процесс” не
имеет отношения к широко известному понятию свободной вероятности. “Вер-
сиями” ξ(t) мы будем называть процессы, соответствующие другим задачам
для оператора L.

В частности, начально-краевая задача Дирихле для оператора ∆/2 приво-
дит к версии винеровского процесса, остановленного в момент первого дости-
жения границы. Задача Неймана для того же оператора приводит к отражаю-
щейся версии винеровского процесса.

Существует два подхода к построению версий свободных процессов. Первый
подход (Леви, Ито, Скороход) можно условно назвать потраекторным: версии
процессов строятся при помощи преобразований траекторий свободного про-
цесса. Главным преимуществом этого подхода является ясный вероятностный
смысл. Однако возможности этого подхода ограничены с точки зрения класса
генераторов, для которых удаётся строить версии. Именно, генератор должен
удовлетворять принципу максимума, или, что практически то же самое, соот-
ветствующее фундаментальное решение должно быть вероятностным распре-
делением.

Второй подход (восходящий к работам Винера, Колмогорова, Феллера,
Иосиды, Дынкина) основан на более прямом использовании функционально-
аналитических методов.

Используемый в настоящей работе метод идейно близок ко второму подходу.
При построении версий свободных процессов мы будем использовать идеологию
теории обобщённых функций. Именно, мы будем рассматривать функционалы
от траекторий, и определять операции над траекториями через операции над
функционалами. Это позволит нам строить вероятностные представления (в
виде математического ожидания функционалов от случайных процессов) для
решения задачи Коши и начально-краевых задач в ситуации, когда фундамен-
тальные решения, вообще говоря, не являются вероятностными распределени-
ями. Данный подход является развитием идей работ И. А. Ибрагимова, Н. В.
Смородиной и М. М. Фаддеева. В работах [1], [2] и [3] они впервые предложили
описанный выше способ и приложили его к задаче о построении вероятностного
представления решений одномерной задачи Коши для уравнения Шрёдингера
(точнее, для уравнения теплопроводности с комплексным коэффициентом σ,
удовлетворяющим условию 0 < arg σ ≤ π/4). В работах [3] и [4] они исполь-
зовали эти же идеи для построения представлений решений начально-краевых
задач для оператора Лапласа с условиями типа Дирихле и Неймана. Наконец,
в работе [5] авторы обобщили эти построения на класс одномерных симметрич-
ных процессов Леви с конечным вторым моментом. В работах [6] и [7] похожие
идеи используются для описания невероятностных безгранично-делимых рас-
пределений (например, 2 < α-устойчивые) и строятся вероятностные представ-
ления решений задачи Коши для их генераторов. В работе М. Платоновой [8]
получены вероятностные представления решений задачи Коши для операторов
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дифференцирования высокого порядка, а в работе [9] рассмотрены процессы,
связанные с оператором Римана–Лиувилля.

В настоящей диссертации эти результаты обобщаются на многомерный слу-
чай. В случае задачи Коши обобщение оказывается относительно несложным,
тогда как начально-краевые задачи требуют более тонких свойств собственных
функций генераторов (которые почти всегда не доступны в явной форме).

В первом параграфе первой главы настоящей диссертации излагается фор-
мальный аппарат для возникающих в этой теории невероятностных распреде-
лений.

Во втором и третьем параграфах первой главы мы строим версию броунов-
ского движения, соответствующую задаче Коши для уравнения Шрёдингера
−iut = ∆u/2. При этом семейство фундаментальных решений, очевидно, не
является вероятностным.

Во второй главе содержатся необходимые в дальнейшем сведения о свой-
ствах собственных функций операторов Лапласа–Дирихле и Лапласа–Неймана.

Следующие главы работы посвящены построению версий свободных про-
цессов, соответствующих начально-краевым задачам в гладких ограниченных
областях. В третьей главе мы строим версию броуновского движения, соответ-
ствующую начально-краевым задачам Дирихле и Неймана в d-мерном шаре
для уравнения Шрёдингера −2iut = ∆u, а также доказываем соответствую-
щие предельные теоремы.

В четвёртой главе работы мы используем операторный подход для постро-
ения разложения Скорохода для вещественного броуновского движения в d-
мерном шаре D. Именно, мы доказываем, что разность полугрупп отражаю-
щегося процесса и свободного процесса является оператором, действующим из
границы ∂D в область D. Мы называем этот оператор оператором среднего на-
копленного импульса. Этот оператор является аналогом среднего локального
времени. Во втором параграфе четвёртой главы мы показываем, что средний
накопленный импульс действительно является средним значением некоторого
оператора, который определён потраекторно. В третьем параграфе мы строим
накопленный импульс случайного блуждания и доказываем предельную теоре-
му о сходимости к накопленному импульсу броуновского движения.

В пятой главе результаты про броуновское движение с отражением в ша-
ре получают обобщение по двум направлениям: вместо шара рассматривает-
ся произвольная область с гладкой границей, а в качестве процесса ξ берётся
симметричный процесс Леви с единичной матрицей ковариации. По формуле
Леви–Хинчина характеристическая функция такого процесса равна

ϕt(p) = exp(−tL(p)), L(p) = −
∫
Rd

(
eip·x − 1− ip · x

)
dΠ(x), (0.3)

причём мера Леви Π инвариантна относительно поворотов и имеет конечный
второй момент, cov ξ(1) = I. В пятом параграфе мы рассматриваем случай сим-
метричных α-устойчивых процессов, которые уже не имеют второго момента.
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Математическая мотивация для изучения процессов Леви и, в частности,
α-устойчивых процессов в ограниченных областях, как отмечают авторы [10],
связана с тем, что их предельные (α = 2) аналоги – броуновское движение с
поглощением/отражением – являются важными моделями в теории вероятно-
стей.

С точки зрения приложений, отражающиеся процессы играют важную роль
в теории стохастического управления и финансовой математике в моделях с
ограничениями на кредит или потребление (см. [11]). Кроме того, отражающие-
ся процессы являются удобным инструментом для изучения времени ожидания
в очередях с конечной пропускной способностью ([12], [13], [14], [15]), а также
дамб и моделей для жидкостей ([16], [17]).

Генератором процесса Леви ξ(t) является нелокальный оператор (теорема
31.5, [18])

− Lf(x) =

∫
Rd

(
f(x + y)− f(x)− f ′(x) · y

)
dΠ(y) (0.4)

с ядром C∞c (Rd) ⊂ D(L), −L ≥ 0. Он порождает сильно-непрерывную полу-
группу (T t)t≥0 в пространстве C0(Rd) непрерывных функций, стремящихся к
нулю на бесконечности.

Вместо того, чтобы пытаться сузить оператор L (что само по себе затрудни-
тельно, так как L – не локальный) на функции, заданные в области D, мы, сле-
дуя за авторами [5], построим специальное продолжение функции f ∈ W 2

2 (D)

до функции, f̃ , лежащей в D(L). При помощи этого продолжения, мы опреде-
лим полугруппу P t, полагая для f ∈ W 2

2 (D)

P tf = T tf̃ .

Продолжение f 7→ f̃ будет строиться так, чтобы в него были “зашиты” кра-
евые условия для генератора, и тем самым была выполнена описанная выше
программа.

Дальнейшее исследование полугруппы P t является целью следующих ра-
бот. Отметим, что построение процесса по полугруппе является нетривиальной
задачей, которая однако может решаться сугубо аналитическими методами.
Примером исследования процесса, отвечающего квадратичной форме

E(u, v) =

∫
D

∇u · ∇v dx, D[E ] = W 1
2 (D)

в области D с гёльдеровой границей является работа [19]. Нетрудно заметить,
что эта форма – не что иное, как квадратичная форма оператора Лапласа с
условиями Неймана. Так как оператор Лапласа является генератором стан-
дартного броуновского движения в Rd, авторы рассматривают отражающееся
броуновское движение в смысле данного выше определения. В своём исследо-
вании Басс и Хсу ссылаются на общую теорию соответствия форм Дирихле
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(симметричных замкнутых квадратичных форм с дополнительным свойством
марковости) процессам Ханта (квази-левонепрерывные строго марковские про-
цессы), возникшую в шестидесятых годах в работах Ханта, Дынкина, Бёрлинга,
Дени, и получившую свой законченный вид в книге Фукушима [20]. В частно-
сти, общая теория говорит, что каждой регулярной форме Дирихле соответ-
ствует процесс Ханта (теорема 6.2.1 из [20]). Если к тому же форма обладает
свойством локальности, то процесс может быть выбран непрерывным (теоре-
ма 4.5.1 из [20]). Наконец, авторы обобщают результат [21] о вероятностном
представлении решения задачи Неймана un = f ∈ B(∂D)

u(x) = lim
t→∞

1

2
E
∫ t

0

f(Xx(s)) dL(s),

где Xx(s) – отражающаяся версия броуновского движения в области D, а L(s)
– процесс локального времени (см. [22]). Для построения процесса локального
времени они так же пользуются техникой форм Дирихле (теорема 5.1.1 из [20]).

Однако теория форм Дирихле применима не только к процессам с непре-
рывными траекториями, но и к скачкообразным процессам. Общий вид замы-
каемой марковской формы в пространстве L2(D) с ядром C∞0 (D) даётся так
называемой формулой Бёрлинга–Дени (теоремы 2.2.1 и 2.2.2 из [20]):

E(u, v) =

∫
D

uxi(x)vxj(x) νij(dx) +

+

∫
D×D\δ

(
u(x)− u(y)

)(
v(x)− v(y)

)
J(dx× dy) +

+

∫
D

u(x)v(x) k(dx)

для u, v ∈ D(E). Первое слагаемое интерпретируется как диффузионный вклад.
Семейство мер νij симметрично (νij = νji) и положительно определено: для
любого компакта K ⊂ D и вектора ξ ∈ Rd выполнено неравенство∑

ij

ξiξjνij(K) ≥ 0.

Вклад второго слагаемого интерпретируется как вклад скачков. При этом мера
J(dx× dy) должна быть положительной вне диагонали δ, и для любого ком-
пакта K ⊂ D удовлетворять∫

K×K\δ
|x− y|2 J(dx× dy) <∞.

Наконец, относительно k(dx) предполагается лишь, что это положительная ме-
ра, и третье слагаемое интерпретируется как поглощение процесса в среде.
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Нас интересует только второе слагаемое в этой формуле, однако простран-
ство C∞0 (D) не плотно в W 1

2 (D), а значит не является ядром формы, отвечаю-
щей отражающемуся процессу Леви.

Отметим ещё, что для отражения диффузий в случае достаточно гладкой
границы (скажем, C3-гладкой; см. [23]) есть способ конструктивного построения
траекторий отражающегося процесса, восходящий к работе Скорохода [24]. В
самом простом случае отражения броуновского движения w(t) от точки 0 на
полуоси [0,∞) используется формула Танаки (см. [25] или [26])

|w(t)| d
= w(t) + ζ(t).

Здесь ζ(t) – это процесс локального времени. Процесс |w| является очевидным
кандидатом на роль отражающейся в [0,∞) версии процесса, и можно убедить-
ся, что так оно и есть. В терминах траекторий (а не генераторов) это проверя-
ется при помощи леммы Скорохода. В случае D = [−1, 1] легко показать, что
рассматриваемая нами в третьей части работы конструкция отражающегося
броуновского движения совпадает с конструкцией Скорохода, хотя и получает-
ся из других соображений.

В пятой части работы мы в некоторой степени воспроизведём это семимар-
тингальное разложение (точного соответствия быть не может, так как процессы
Леви, вообще говоря, не обладают локальным временем). Для этого мы по-
строим не одно, а два продолжения f и f̃ до класса D(L) начальной функции
f ∈ W 2

2 (D). По f мы определим полугруппу Rt, отвечающую процессу в об-
ласти (аналог w(t) в формуле Танака), а по f̃ – полугруппу P t, отвечающую
отражающейся версии процесса (|w(t)| в формуле Танака). При этом естествен-
но ожидать, что их разность будет сосредоточена на границе ∂D. Мы покажем,
что эту разность полугрупп удобно рассматривать в терминах некоторого опе-
ратора

Qt : W
1/2
2 (∂D)→ W 2

2 (D).

Как заметили авторы [5], этому оператору естественно придать смысл среднего
накопленного границей в результате отражений процесса импульса. Мы пока-
жем, что накопленный импульс можно определить не только в среднем, но и
потраекторно (в смысле сходимости в L2(dx× dP )).

Есть группа общих результатов, касающихся отражения общих процессов
Ханта в смысле форм Дирихле в гладкой области D. Они восходят к статьям о
reflected Dirichet spaces Сильверстейна [27] и Чена [28]. По аналогии с ортого-
нальным (по норме W 1

2 (D)) разложением в прямую сумму (см. [29], гл. 2, §10,
теорема 4)

W 1
2 (D) = W 1,0

2 (D)⊕G1
2(D), (0.5)

где G1
2(D) – пространство гармонических функции из W 1

2 (D), авторы рассмат-
ривают форму E с ядром C∞c (D) ⊂ D(E), определяют аналог понятия гармо-
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ничности, отвечающий такой форме, и расширяют форму до

D(E ref) = D(E)⊕ G̃1
2(D).

Процесс Ханта, отвечающий E ref можно назвать отражённым в смысле Силь-
верстейна-Чена.

В некоторых случаях удаётся продвинуться дальше. Авторы работы [10]
построили процессы, отвечающие форме Дирихле дробного оператора Лапласа
в области D

E(u, v) =
1

c

∫
D

∫
D

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+α

dx dy

на области определения F , состоящей из функций u ∈ L2(D) таких, что конечен
интеграл ∫

D

∫
D

(
u(x)− u(y)

)2

|x− y|d+α
dx dy <∞.

Они показали, что построенные ими процессы являются в точности отражением
с смысле Сильверстейна–Чена, а последнее неравенство определяет область
определения формы E ref .

Иной подход был предложен в работе [30]. Именно, авторы рассматривают
с квадратичной формой дробного оператора Лапласа в Rd

E(u, v) =
1

c

∫
Rd

∫
Rd

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|d+α

dx dy,

а в качестве “граничного условия” ставят нелокальное условие Неймана

Nsu(x) =

∫
D

u(x)− u(y)

|x− y|d+α
dy = 0 для x 6∈ D.

Такая постановка обладает многими преимуществами. Среди них ясная вероят-
ностная интерпретация. Процесс с таким генератором, выскакивая за пределы
области D, немедленно возвращается в случайную точку области с плотно-
стью пропорциональной |x− y|d+α.

Следует также упомянуть работу [31], в которой рассматривается дробный
лаплассиан в смысле спектральной теоремы (разложение по собственным функ-
циям оператора Лапласа с условиями Неймана в области).

Наконец, в работах [32] и [33] рассматривается детерминистический воз-
врат процесса в область, и доказывается связь с задачей типа Неймана для
нелокальных операторов.

Наша работа, наследующая работе [5], отличается от описанных выше ре-
зультатов тем, что мы работаем с генератором процесса Леви с классическим
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условием Неймана. Иначе говоря, мы рассматриваем аналог AN генератора L
в области D, с областью определения D(AN) = N (D), где

N (D) =
{
u ∈ W 2

2 (D) : γ1u = 0
}
,

а оператор γ1 : W 2
2 (D)→ W

1/2
2 (D) – это замкнутый с C∞c (Rd) оператор взятия

нормальной производной на ∂D.
В качестве мотивации для рассмотрения задачи в такой постановке можно

указать на тот факт, что любое решение u ∈ C∞(Rd) уравнения

−∆u = κ2u

удовлетворяет уравнению
−Lu = L(κ)u,

где оператор L определён формулой (0.4), а через L(p) для p ≥ 0 обозначена
функция (0.3), которая для симметричного процесса Леви оказывается завися-
щей только от модуля p = |p|. При этом справедливо неравенство

|L(p)| ≤ Cp2

для всех p ≥ 0.
Подчеркнём, что во всех частях работы мы интересовались скорее методом,

нежели общностью результатов. Поэтому в пятой части мы ограничиваемся
случаем гладкой границы и чисто скачкообразного симметричного процесса
Леви с конечным вторым моментом. Добавить диффузионный член к чисто
скачкообразному процессу Леви не составляет труда. Процессы Леви, не име-
ющие второго момента (например, α-устойчивые процессы) также могут быть
рассмотрены этим методом, однако непосредственно изложенная в данной ра-
боте схема на них не распространяется. В конце пятой части мы сделаем серию
замечаний о том, что следует делать в этом случае. Симметричность процес-
са Леви на данный момент является существенным ограничением на приме-
нимость метода. В приложениях 1 и 2 приводятся необходимые обозначения и
стандартные факты о начально-краевых задачах в ограниченных многомерных
областях.
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Глава 1

Комплексное броуновское движение

В этой части работы мы построим специальную комплексификацию стандарт-
ного броуновского движения w(t) в Rd, соответствующую задаче Коши для
уравнения Шрёдингера

− ut = ∆u/2, u(0,x) = ϕ(x), (1.1)

где ∆ – оператор Лапласа в Rd. Как отмечалось во введении, отвечающие та-
кому “процессу” распределения не могут быть вероятностными. Пусть d = 1.
Если записать усреднение по траекториям в виде

u(t, x) = Eϕ(x+ σw(t)) =
1

2π
E
∫ +∞

−∞
e−ipxe−iσw(t)ϕ̂(p) dp,

становится ясно, что при σ = eiπ/4 и произвольной функции ϕ ∈ L2(R) двойной
интеграл E

∫∞
−∞, вообще говоря, разойдётся. В работе [3] был предложен способ

регуляризации расходящегося интеграла при помощи двух инструментов: про-
екторов Рисса и того, что авторы назвали вторым центрированием – техники
удаления третьего семиинварианта у распределения. При помощи проекторов
Рисса мы разложим функцию ϕ ∈ L2(R) в сумму двух функций

ϕ = ϕ+ + ϕ−,

где ϕ+ допускает аналитическое продолжение в верхнюю полуплоскость, а ϕ− в
нижнюю. Операция второго центрирования будет объяснена ниже. И та, и дру-
гая операция, если рассмотреть их как операции над процессом w(t), выводят
за пределы класса вероятностных мер.

Результаты этой главы опубликованы в работе [34].

1.1 Случайные функционалы и операции над
ними

Чтобы справиться с тем, что распределения, отвечающие уравнению Шрё-
дингера, не являются вероятностными, мы введём в рассмотрение довольно
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необычный класс случайных функционалов. Для нас он будет служить тем
самым расширением понятия случайного вектора, в которое уложится интере-
сующий нас класс распределений. Мы будем действовать по аналогии со стан-
дартным определением [35], гл. 2, §1.

Обозначим через RV(Rd) пространство d-мерных случайных векторов на
некотором вероятностном пространстве (Ω,F ,P), снабжённое топологией схо-
димости по распределению. В качестве класса пробных функций мы возьмём
пространство Z0(Rd) функций

ϕ : Rd → R,

являющихся обратными преобразованиями Фурье зарядов конечной полной ва-
риации с финитным носителем

ϕ(x) =
1

(2π)d

∫
Rd
e−ipxΦ̂(dp). (1.2)

В случае, когда преобразование Фурье ϕ̂ функции ϕ является суммируе-
мой на Rd функцией, заряд Φ̂ будет абсолютно непрерывен относительно меры
Лебега на Rd, причём

Φ̂(A) =

∫
A

ϕ̂(p) dp .

Ниже преобразованием Фурье функции класса Z0(Rd) будем называть как
функцию ϕ̂(p), так и заряд Φ̂(A).

Элементы пространства Z0 являются целыми аналитическими функциями
d переменных, ограниченными на Rd.

Топологию на Z0(Rd) зададим следующим образом: будем говорить, что
ϕn

Z0−→ 0, если Φ̂n
∗w−→ 0. Иначе говоря, для всех непрерывных ограниченных

функций g ∫
g dΦ̂n → 0.

Случайными функционалами мы будем называть линейные отображения
ξ : Z0(Rd) → RV(R). Действие ξ на ϕ ∈ Z0(Rd) обозначаем через ξ[ϕ]. Обоб-
щённой случайной функцией будем называть непрерывный случайный функ-
ционал. Множество обобщённых функций будем обозначать GRV(Rd).

Нам потребуется особое вложение пространства RV(Rd) в GRV(Rd). Имен-
но, для каждой ξ ∈ RV(Rd) определим обобщённую случайную функцию ξ̃ ∈
GRV(Rd), действующую на ϕ ∈ Z0(Rd) по правилу

ξ̃[ϕ] = ϕ(−ξ). (1.3)

Для простоты обозначений мы будем опускать волну над ξ.
Далее нам потребуется определить ряд операций над обобщёнными слу-

чайными функциями. В силу специфики нашей задачи, они не всегда будут
совпадать с определениями из [35].
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Под αξ для вещественных α и ξ ∈ GRV(Rd) будем понимать обобщённую
случайную функцию, действующую по правилу

(αξ)[ϕ] = ξ[ϕα], (1.4)

где ϕα(x) = ϕ(αx).
Обобщённым математическим ожиданием ξ ∈ GRV(Rd) будем называть

линейный функционал Eξ : Z0(Rd)→ C, действующий по правилу

(Eξ)[ϕ] = Eξ[ϕ]. (1.5)

В [35] этот объект называется средним значением обобщённой случайной функ-
ции.

Характеристической функцией обобщённой случайной функции
ξ ∈ GRV(Rd) будем называть функцию fξ : Rd → C

fξ(p) = Eξ
[
e−ipx

]
,

где под скобками в экспоненте понимается стандартное скалярное произведение
в Rd, а функционал действует по переменной x.

С определённым выше вложением ξ 7→ ξ̃ характеристическая функция
обычной случайной величины совпадает с обычным определением.

Далее будем говорить, что ξ и η из GRV(Rd) независимы, если при всех
пробных функциях ϕ, ψ ∈ Z0(Rd) обычные случайные величины ξ[ϕ] и η[ψ]
независимы. Аналогично определим независимость набора {ξk} ⊂ GRV(Rd).

Проекцией случайного функционала ξ на k-ую координатную ось будем на-
зывать случайный функционал ξk ∈ GRV(R1), действующий на ϕ ∈ Z0(R1) по
правилу

ξk[ϕ] = ξ[ϕk], (1.6)

где под ϕk(x) = ϕ(xk) мы понимаем функцию ϕk ∈ Z0(Rd), зависящую только
от переменной xk.

Определим теперь обратную операцию. Паре обобщённых случайных функ-
ций ξ ∈ GRV(Rn), η ∈ GRV(Rm) сопоставим обобщённую случайную функцию
(ξ, η) ∈ GRV(Rn+m), которая действует на ϕ ∈ Z0(Rn+m) по правилу

(ξ, η)[ϕ(x,y)] = ξ [η [ϕ(x,y)]] . (1.7)

Аналогичным образом определим обобщённую случайную функцию

(ξ1, ξ2, . . . , ξd),

действующую на ϕ(x1, . . . , xd).
Таким образом, обобщённая случайная величина ξ ∈ GRV(Rd) может быть

записана в виде (ξ1, . . . , ξd), где под ξk понимается k-ая проекция.
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Лемма 1.1. Пусть обобщённые случайные функции ξ1, . . . , ξd ∈ GRV(Rd)
независимы. Тогда

f(ξ1, ξ2, ..., ξd)(p1, p2, . . . , pd) =
d∏

k=1

fξk(pk).

Доказательство. Докажем утверждение в случае n = 2.

f(ξ, η)(p1, p2) = E (ξ, η)[e−ipxe−ipy] = E ξ[η[e−ipye−ipx]] =

= E ξ[e−ipx]η[e−ipy] = E ξ[e−ipx]E η[e−ipy] = fξ(p1)fη(p2).

Введём стандартные обозначения для оператора инверсии I

Iϕ(x) = ϕ(−x) (1.8)

и оператора сдвига Tx на x ∈ Rd

Txϕ(y) = ϕ(y + x).

С каждой обобщённой случайной функцией ξ свяжем оператор Qξ, действу-
ющий по правилу

Qξϕ(x) = E ξ[Txϕ]. (1.9)

Лемма 1.2. Оператор Qξ действует на функции из L2(Rd)∩L1(Rd) как псев-
додифференциальный с символом fξ(p).

Доказательство. Имеем

Qξϕ(x) = E ξ[Txϕ] =
1

(2π)d

∫
e−ipxE ξ[e−ipy]ϕ̂(p) dp =

=
1

(2π)d

∫
e−ipxfξ(p)ϕ̂(p) dp .

Пусть характеристическая функция ξ ∈ GRV(Rd) имеет непрерывные про-
изводные по всем переменным вплоть до порядка |β|. Обобщёнными семиинва-
риантами ξ будем называть коэффициенты sα, |α| 6 |β| в формуле

ln fξ(p1, p2, . . . , pd) =

|β|∑
|α|=1

sαi|α|

α!
pα +O(|p||β|+1).

Если семиинварианты ξ ∈ GRV(Rd) корректно определены и функция

B̂(p1, p2, . . . , pd) = exp

− ∑
|α|=1, 3

sαi|α|

α!
pα


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лежит в классе L1(Rd), то её обратное преобразование Фурье B определено в
классическом смысле. В этом случае вторым центрированием ξ будем называть
случайный функционал ξ(2), определяемый равенством

ξ(2)[ϕ] = ξ[ϕ ∗B].

Нетрудно показать, что семиинварианты первого и третьего порядка слу-
чайного функционала ξ(2) равны нулю.

Классом Z0+ будем называть множество функций ϕ ∈ Z0(R1) таких, что
supp ϕ̂ ⊂ (−∞, 0]. Аналогично определяется Z0−. Функции класса Z0+ ограни-
чены в верхней полуплоскости, а Z0− – в нижней.

Далее, проекторы Рисса P± – это операторы, действующие на ψ ∈ Z0(R1)
по правилу

P+ψ(x) =
1

2π

+∞∫
0

e−ipx Ψ̂(dp), P−ψ(x) =
1

2π

0∫
−∞

e−ipx Ψ̂(dp),

Проекторы Рисса “разбивают” функцию ψ ∈ Z0 на ψ+ ∈ Z0+ и ψ− ∈ Z0−.
Для ξ ∈ GRV(R1) определим обобщённую случайную функцию ξF, дей-

ствующую на ϕ ∈ D(R1) по правилу

ξF[ϕ] = ξ[(IP+ + P−)ϕ],

где I – это оператор инверсии (1.8). Для обычных случайных величин ξ ∈
RV(Rd) последнее равенство может быть переписано как

ξF[ϕ] = ϕ+(ξ) + ϕ−(−ξ).

Следующим шагом обобщим операцию F на класс GRV(Rd). Обобщённой
случайной функции ξ ∈ GRV(Rd) поставим в соответствие ξF из того же клас-
са, действующую по правилу

ξF = (ξF1 , . . . , ξ
F
d ),

где ξk – проекция ξ на k-ую ось, определённая формулой (1.7).
Введём удобное обозначение. Если x = (x1, . . . , xd) ∈ Rd, то через

xF = (|x1|, . . . , |xd|) (1.10)

будем обозначать набор чисел, составленный из модулей координат вектора x.

Лемма 1.3. Обобщённые характеристические функции ξ, ξF ∈ GRV(Rd) свя-
заны соотношением

fξF(p) = fξ(pF).
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Утверждение леммы проверяется прямым вычислением.
Ясно, что если ξ ∈ RV(Rd), то fξF(p) в окрестности p = 0 не имеет непре-

рывных производных и, соответственно, для неё формально не определены ни
семиинварианты, ни второе центрирование. Тем не менее, в некоторых частных
случаях такое определение можно дать.

Именно, дополнительно предположим, что семминварианты sα обобщённой
случайной функции ξ ∈ GRV(Rd) корректно определены и функция

B̂(p1, p2, . . . , pd) = exp

− ∑
|α|=1, 3

sαi|α|

α!
pα


лежит в классе L1(Rd), соответственно, её обратное преобразование Фурье B
определено в классическом смысле. В этом случае вторым центрированием ξF

будем называть обобщённую случайную функцию ξF, (2), определяемую равен-
ством

ξF, (2)[ϕ] = ξF[ϕ ∗B
]
.

Нетрудно показать справедливость следующего утверждения.

Лемма 1.4. Пусть вектор ξ ∈ GRV(Rd) имеет диагональную матрицу ко-
вариации. Тогда

ξ(2) =
(
ξ

(2)
1 , ξ

(2)
2 , . . . , ξ

(2)
d

)
.

В данном случае под матрицей ковариации ξ ∈ GRV(Rd) мы понимаем мат-
рицу, составленную из обобщённых семиинвариантов ξ второго порядка. В
частности, утверждение справедливо для векторов с независимыми компо-
нентами.

1.2 Аппроксимация решения задачи Коши для
уравнения −2iut = ∆u средними значениями
функционалов от пуассоновского точечного
поля

Пусть ν(dt, dx) – пуассоновская случайная мера на (0, ∞)2 с интенсивностью

E ν(dt, dx) =
dt dx

x3
.

Для ε > 0 определим сложный пуассоновский процесс, полагая

ξε1(t) =

t∫
0

eε∫
ε

xν(ds, dx).
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Здесь e – это основание натурального логарифма.
Известно, что (см. [36], стр. 42) характеристическая функция случайной

величины ξε1(t) равна

fξε1(t)(p) = exp

t eε∫
ε

(
eipx − 1

) dx
x3

 .

Пусть ξεk(t), k = 2, . . . , d – независимые копии ξε1(t). Как и выше, положим
σ = e

iπ
4 . При фиксированных t > 0, ε > 0 определим обобщенную случайную

функцию ηε(t) ∈ GRV(Rd), полагая

ηε(t) =
(
σξε1(t), σξε2(t), . . . , σξεd(t)

)F, (2)

Аналогично тому, как это было сделано в [3], можно показать, что в данном
случае операция второго центрирования корректно определена.

В силу независимости набора {ξεk(t)}, последнее равенство можно перепи-
сать как

ηε(t) =
(
(σξε1(t))F, (2), (σξε2(t))F, (2), . . . , (σξεd(t))

F, (2)
)
.

Заметим, что ни операция второго центрирования, ни операция F, не вли-
яют на независимость (они сводятся к замене пробной функции). Поэтому ха-
рактеристическая функция ηε(t) распадается в произведение

fηε(t)(p1, . . . , pd) =
d∏

k=1

f(
σξεk(t)

)F, (2)(pk).
Характеристические функции сомножителей легко пересчитываются через

характеристическую функцию ξε1(t)

f(
σξεk(t)

)F, (2)(pk) = f(
σξε1(t)

)(2)(|pk|) =

= exp

(
− itp2

k

2
+ t

eε∫
ε

(
ei|pk|σx − 1− i|pk|σx−

− 1

2

(
i|pk|σx

)2

− 1

6

(
i|pk|σx

)3) dx
x3

)
.

Для каждого ε > 0 определим полугруппу операторов P t
ε , полагая

P t
ε = Qηε(t),

где Qηε(t) – оператор, задаваемый формулой (1.9), соответствующий ξ = ηε(t).
При каждом t этот оператор действует как псевдодифференциальный с симво-
лом fηε(t), и, следовательно, распадается в произведение коммутирующих опе-
раторов, каждый из которых обладает полугрупповым свойством по t.

18



Далее, обозначим через P t полугруппу

P t = e
it
2 ∆,

где ∆ – оператор, действующий в пространстве L2(Rd) на области определения
W 2

2 (R) как оператор Лапласа. Полугруппа P t переводит начальную функцию
ϕ в решение u(t, ·) уравнения Шрёдингера (1.1)(см., например, [37], X.8.).

Нам понадобится одно техническое утверждение, которое легко проверить
непосредственным вычислением.

Лемма 1.5. Пусть

g(z) = ez − 1− z − z2

2
− z3

6
.

Тогда при всех z ∈ C, удовлетворяющих условию arg z ∈ [π2 ,
3π
2 ] справедливо

неравенство |g(z)| 6 min{|z|3, |z|4}.

Сформулируем основное утверждение этого параграфа.

Теорема 1.1. Существует постоянная C > 0 такая, что для любой ϕ ∈
W 4

2 (Rd) и всех t > 0 справедливо неравенство

‖P t
εϕ− P tϕ‖L2

6 Ctε2‖ϕ‖W 4
2
.

Доказательство. Доказательство теоремы вполне аналогично доказательству
теоремы 1 параграфа 4 статьи [3] основано на использовании формулы Дюаме-
ля ([38], гл. IX, § 2 п.1)

et(A+B) − etA =

t∫
0

e(t−τ)(A+B)BeτA dτ. (1.11)

Введём обозначения для операторов

A =
i

2
∆, B = Gε − A,

где Gε – это генератор полугруппы P t
ε .

Отметим, что при всех t > 0 справедливо неравенство

‖etA‖W 4
2→W 4

2
6 1,

а из леммы 1.5 следует справедливость неравенства

‖et(A+B)‖L2→L2
6 1.

Таким образом, для доказательства теоремы достаточно оценить оператор-
ную норму ‖B‖W 4

2→L2
.
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Так как генератор произведения коммутирующих полугрупп есть сумма ге-
нераторов, оператор B является псевдодифференциальным, а его символ β̂ рас-
падается в сумму

β̂(p1, p2, . . . , pd) =
d∑

k=1

b̂(pk), (1.12)

где

b̂(p) =

eε∫
ε

(
ei|p|σx − 1− i|p|σx− 1

2

(
i|p|σx

)2

− 1

6

(
i|p|σx

)3
)
dx

x3
. (1.13)

Заметим, что для некоторой константы C > 0 справедливо неравенство
|β̂(p)|2 6 C|p|4ε2. Из этого неравенства следует, что для некоторой константы
C̃ > 0 справедливо

‖Bϕ‖2
L2

=

(
1

2π

)d ∫
|β̂(p)|2|ϕ̂(p)|2 dp 6

6

(
1

2π

)d ∫ d∑
k=1

∣∣∣̂b(pk)∣∣∣2 |ϕ̂(p)|2 dp 6

6 C̃ε2

∫
dp

d∑
k=1

|pk|4 |ϕ̂(p)|2 dp = C̃ε2‖ϕ‖W 4
2
. (1.14)

Из последней оценки следует утверждение теоремы.

1.3 Аппроксимация решения задачи Коши для
уравнения −iut = ∆u/2 средними
значениями функционалов от случайных
блужданий

Пусть {ξj}∞j=1 – последовательность независимых одинаково распределённых
случайных d-мерных векторов с общим распределением P , сосредоточенном на
Rd

+. Будем предполагать, что случайный вектор ξ1 имеет единичную матрицу
ковариаций и конечные моменты третьего порядка. Пусть η(t) – стандартный
пуассоновский процесс, не зависящий от последовательности {ξj}∞j=1. Опреде-
лим последовательность {ζn}∞n=1 сложных пуассоновских процессов, полагая

ζn(t) =
1√
n

η(nt)∑
j=1

ξj.
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При каждом t > 0 характеристическая функция случайного вектора ζn(t)
равна

fζn(p1, . . . , pd) = exp

nt∫
Rd+

(
exp

(
ipy√
n

)
− 1

)
P(dy)

 .

Как и ранее, положим σ = e
iπ
4 и определим при каждом фиксированном t

обобщённую случайную функцию ηn(t) ∈ GRV(Rd), полагая

ηn(t) =
(
σζn1 (t), σζn2 (t), . . . , σζnd (t)

)F, (2)
.

Нетрудно показать, что операция второго центрирования в данном случае
определена корректно.

Далее, так как матрица ковариации обобщённой случайной функции ηn(t)
диагональна, то, в силу леммы 1.4, справедливо

ηn(t) =
(
(σζn1 (t))F, (2), (σζn2 (t))F, (2), . . . , (σζnd (t))F, (2)

)
.

Обобщённая характеристическая функция ηn(t) имеет вид

fηn(t)(p1, . . . , pd) = −i|p|
2

2
+ n

∫
Rd+

(
exp

(
iσpFy√

n

)
− 1−

−
(
iσpFy√

n

)
− 1

2

(
iσpFy√

n

)2

− 1

6

(
iσpFy√

n

)3
)
P(dy) . (1.15)

Для каждого n ∈ N определим полугруппу операторов P t
n, полагая

P t
n = Qηn(t),

где Qηn(t) – оператор, задаваемый формулой (1.9), соответствующий ξ = ηn(t).
При каждом t этот оператор действует как псевдодифференциальный с симво-
лом fηn(t).

Сформулируем основное утверждение этого параграфа.

Теорема 1.2. Существует постоянная C > 0 такая, что для любой функции
ϕ ∈ W 3

2 (Rd) и всех t > 0 справедливо неравенство

‖P t
nϕ− P tϕ‖L2

6
Ct√
n
‖ϕ‖W 3

2
, (1.16)

где, как и выше,
P t = e

it
2 ∆. (1.17)
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Доказательство. Доказательство этого утверждения также основано на ис-
пользовании формулы Дюамеля (1.11). Обозначим

A =
i

2
∆, B = Gn − A, (1.18)

где Gn – это генератор полугруппы P t
n.

Как и выше, достаточно оценить операторную норму ‖B‖W 3
2→L2

.
Заметим, что величина pFy в подынтегральном выражении формулы (1.15)

всегда неотрицательна. Из леммы 1.5 следует неравенство∣∣∣∣g(iσpFy√
2n

)∣∣∣∣ 6 (pFy√
2n

)3

6

(
‖pF ‖ · ‖y‖√

2n

)3

.

Таким образом

|̂bn(p1, . . . , pd)| 6
‖pF ‖3

23/2
√
n

∫
‖y‖3P(dy) .

Последний интеграл конечен в силу условия на моменты третьего порядка.
Далее, имеем

‖Bϕ‖2
L2

=
1

2π

∫
|ϕ̂(p)|2|̂bn(p)|2 dp ≤

≤ C

n

∫
|ϕ̂(p)|2‖pF ‖6 dp 6

C̃

n
‖ϕ‖2

W 3
2
.

Из последней оценки следует утверждение теоремы.
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Глава 2

Конструкция комплексного броуновского
движения в d-мерном шаре с отражением
или поглощением на границе шара

В этой части работы мы рассматриваем процессы, отвечающие начально-крае-
вым задачам Дирихле и Неймана для оператора Лапласа в d-мерном шаре.
Так как оператор Лапласа во всём пространстве является генератором свобод-
ного броуновского движения, такие процессы мы будем называть броуновским
движением с поглощением и с отражением соответственно.

Результаты настоящей статьи опубликованы в работе [39].

2.1 Конструкция комплексного броуновского
движения с поглощением на границе

Пусть σ = eiφ, где φ ∈ [0, π/4], и пусть начальная функция f задачи Дирихле
ut = σ2∆u/2, x ∈ D,
u(0, x) = f(x),

u
∣∣
∂D

= γ0f,

(2.1)

принадлежит классу W 2
2 (D). Пусть fh – это гармоническая функция в области

D, удовлетворяющая условию γ0fh = γ0f .
Обозначим через chλµ коэффициенты разложения γ0f по базису {Y µ

λ }. Тогда

fh(x) =
∑

chλµx
λY µ

λ (x̂). (2.2)

При этом fh принадлежит классу W 2
2 (D) и справедливо∑

λ3|chλµ|2 <∞. (2.3)

Для каждого M > 0 определим гармонический полином fMh , полагая

fMh (x) =
∑

λ≤M1/d

chλµx
λY µ

λ (x̂). (2.4)
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Определим функциюf0, полагая f0 = f − fh. Ясно, что f0 ∈ W 2,0
2 (D). Раз-

ложим f0 по собственным функциям оператора Лапласа с условиями Дирихле
(лемма 4.5)

f0(x) =
∑

c0
ksk(x) =

∑
c0
λµkj

d
λ(κλkx)Y µ

λ (x̂). (2.5)

Для M > 0 определим функцию fM0 , полагая

fM0 (x) =
∑
m≤M

c0
msm(x). (2.6)

Из леммы 4.11 (Приложение 1) следует, что fM0 аналитическая функция d
переменных. Наконец, положим fM = fM0 + fMh .

Теперь определим полугруппу P t, полагая для f ∈ W 2
2 (D)

(P tf)(x) = (L2) lim
M→∞

E fM(x + σw(t)). (2.7)

Ввиду гармоничности h, имеет место

E fMh (x + σw(t)) = fMh (x). (2.8)

Пользуясь леммой 4.11, получим

E fM0 (x + σw(t)) =
∑
m≤M

c0
m exp

(
−σ

2κ2
mt

2

)
sm(x). (2.9)

Таким образом

(P tf)(x) =
∑

c0
m exp

(
−σ

2κ2
mt

2

)
sm(x) + fh(x). (2.10)

Покажем, что при M →∞ имеет место сходимость P tfM → P tf :

Теорема 2.1. Пусть f ∈ W 2
2 (D), u(t, x) = (P tf)(x) и uM(t, x) = (P tfM)(x).

Тогда существует число C > 0 такое, что

sup
t≥0
‖u(t, ·)− uM(t, ·)‖L2(D) ≤

C

M 2/d
‖f‖W 2

2 (D). (2.11)

Доказательство. Заметим, что

‖u(t, ·)− uM(t, ·)‖2
L2(D) ≤ 2‖f0 − fM0 ‖2

L2(D) + 2‖fh − fMh ‖2
L2(D). (2.12)

В силу выбранной нормировки, первое слагаемое оценивается через хвост
ряда |c0

k|2, тогда как члены разложения fh не нормированы в L2(D):

‖xλY µ
λ (x̂)‖2

L2(D) =

∫ 1

0

x2λxd−1 dx

∫
Sd−1

|Y µ
λ (x)|2 dx̂ =

1

2λ+ 2d
. (2.13)
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При λ ≥M 1/d справедливо

1

2

1

λ+ d
≤ λ3

M 4/d
(2.14)

Следовательно,

‖u(t, ·)− uM(t, ·)‖2
L2(D) ≤

C

M 4/d

( ∞∑
m=1

|c0
m|2m4/d +

∑
|chλµk|2λ3

)
≤

≤ C

M 4/d

(
‖f0‖2

W 2
2 (D) + ‖γ0f‖2

W
3/2
2 (∂D)

)
≤ C

M 4/d
‖f‖2

W 2
2 (D). (2.15)

В последнем неравенстве использована теорема о следе (см. [40]).

Получим теперь явные формулы для ядра оператора P t. Подставим в (2.10)
выражение для коэффициентов Фурье c0

m = (f0, sm)L2(D) и изменим порядок
интегрирования. Получим

(P tf)(x) =

∫
f0(y)Rt(x, y) dy + fh(x), (2.16)

где

Rt(x, y) =
∑

sm(x)sm(y) exp

(
−σ

2κ2
mt

2

)
. (2.17)

В случае σ2 = i ряд (2.17) расходится и мы рассматриваем его как формальное
выражение для ядра унитарного оператора. Подставим в (2.16) f0 = f − fh и
fh = Hf . Тогда

(P tf)(x) =

∫
D

f(y)Rt(x, y) dy +

∫
∂D

(γ0f)(ŷ)Qt(x, ŷ) dŷ, (2.18)

где

Qt(x, ŷ) = h0(x, ŷ)−
∫
D

Rt(x, u)h0(u, ŷ) du. (2.19)

Вычислим второе слагаемое ядра Qt. Первым шагом подставим в разложе-
ние Rt (2.10) явный вид нормированных (формула (4.28)) собственных функ-
ций:

Rt(x, u) =
∑ jdλ(κλkx)Y µ

λ (x̂)

nλµk

jdλ(κλku)Y µ
λ (û)

nλµk
exp

(
−σ

2κ2
λkt

2

)
. (2.20)

Затем воспользуемся известным разложением для ядра Пуассона

h0(u, ŷ) =
∑

uλY µ
λ (û)Y µ

λ (ŷ). (2.21)
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Наконец применим соотношение ортогональности для сферических гармо-
ник (4.12) и лемму (4.9)∫
D

Rt(x, u)h0(u, ŷ) du =

=
∑ 1

n2
λµk

exp

(
−σ

2κ2
λkt

2

)
jdλ(κλkx)Y µ

λ (x̂)Y µ
λ (ŷ)

1∫
0

yd−1 jdλ(κλky) yλ dy =

=
∑

2

(
jdλ+1(κλk)

)−2jdλ+1(κλk)
κλk

exp

(
−σ

2κ2
λkt

2

)
jdλ(κλkx)Y µ

λ (x̂)Y µ
λ (ŷ) (2.22)

Окончательно,

(P tf)(x) =

∫
D

f(y)Rt(x, y) dy +

∫
∂D

(γ0f)(ŷ)Qt(x, ŷ) dŷ, (2.23)

где

Qt(x, ŷ) = h0(x, ŷ)− 2
∑ exp

(
−σ2κ2

λkt/2
)

κλk jdλ+1(κλk)
jdλ(κλkx)Y µ

λ (x̂)Y µ
λ (ŷ) (2.24)

и

Rt(x, u) = 2
∑ exp

(
−σ2κ2

λkt/2
)(

jdλ+1(κλk)
)2 jdλ(κλkx)jdλ(κλku)Y µ

λ (x̂)Y µ
λ (û). (2.25)

Как отмечалось в [4], в случае вещественного σ формула (2.23) имеет про-
стой вероятностный смысл. Именно, для фиксированных (t, x) формула (2.23)
задаёт распределение винеровского процесса в момент времени t, выпущенного
из точки x ∈ D и прилипающего к границе ∂D в момент первого достижения.
Функция Rt(x, ·) есть плотность меры в области D, отвечающая тем траек-
ториям x + σw(t), которые к моменту t ещё не вышли на границу, а Qt(x, ·)
есть плотность меры на границе области, отвечающая распределению значания
процесса в момент первого достижения границы.

При Re σ2 > 0 полученные формулы для фундаментального решения того
же типа, что и для вещественного σ, однако Rt(x, y) dy и Qt(x, ŷ) dŷ теперь
не вероятностные меры, а комплекснозначные заряды внутри круга D и на его
границе ∂D соответственно. При этом сохраняется свойство∫

D

Rt(x, y) dy +

∫
∂D

Qt(x, ŷ) dŷ = 1, (2.26)

вытекающее из следующего наблюдения: P t1 = 1.
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В случае же Re σ2 = 0, экспоненциальные сомножители по модулю рав-
ны единице, что влечёт расходимость рядов для Rt и Qt. Соответственно, при
фиксированных (t, x) выражение Rt(x, y) dy является теперь не мерой, а лишь
функционалом, заданным на множестве конечных линейных комбинаций функ-
ций sm. В частности, это означает, что при фиксированных (t, x) невозможно
придать смысл выражению ∫

D

f(y)Rt(x, y) dy (2.27)

для произвольного f ∈ L2(D). Однако мы можем, фиксировав t > 0, опреде-
лить (2.27) при почти всех по мере Лебега x ∈ D, продолжая оператор

Ut : f 7→
∫
D

f(y)Rt(x, y) dy (2.28)

по изометрии (2.17) до унитарного оператора Ut : L2(D)→ L2(D).

2.2 Конструкция комплексного броуновского
движения с отражением от границы

В этом параграфе мы построим полугруппу, действующую на f ∈ W 2
2 (D), ко-

торая даёт решение задачи Неймана
ut = σ2∆u/2, x ∈ D,
u(0, x) = f(x),

∂u

∂n

∣∣∣∣
∂D

= γ0
∂f

∂n
,

(2.29)

в том случае, когда выполнено условие разрешимости∫
∂D

∂f

∂n
dS(ŷ) = 0, (2.30)

и даёт решение некоторой вспомогательной задачи Неймана если условие раз-
решимости не выполнено.

Через χ(x) обозначим функцию

χ(x) =
x2

2|D|d
. (2.31)

Функция χ очевидно является бигармонической и удовлетворяет условию∫
∂D

∂χ

∂n
dŷ = 1. (2.32)
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Рассмотрим f ∈ W 2
2 (D). Выделим из неё бигармоническую компоненту fb,

полагая
fb(x) = χ(x)

∫
∂D

∂f

∂n
dŷ. (2.33)

Из (2.32) следует, что ∫
∂D

∂f

∂n
dŷ =

∫
∂D

∂fb
∂n

dŷ. (2.34)

Функция f1 = f −fb удовлетворяет условию разрешимости задачи Неймана
(2.30). Пусть fh – это гармоническая функция в области D, удовлетворяющая
условию ∂nf = ∂nf1.

Обозначим через chλµ коэффициенты разложения функции γ0∂nf1 по базису
{Y µ

λ }. Тогда

fh(x) =
∑
λ 6=0

chλµ
xλ

λ
Y µ
λ (x̂). (2.35)

При этом fh принадлежит классу W 2
2 (D) и справедливо∑

λ|chλµ|2 <∞. (2.36)

Для каждого M > 0 определим гармонический полином fMh , полагая

fMh (x) =
∑

0 6=λ≤M1/d

chλµ
xλ

λ
Y µ
λ (x̂). (2.37)

Рассмотрим теперь функцию f0 = f1 − fh. Ясно, что f0 удовлетворяет
γ0∂nf0 = 0. Разложим её в ряд по собственным функциям оператора Лапласа
с условиями Неймана (лемма 4.6)

f0(x) =
∑

c0
ms̃m(x) =

∑
c0
λµkj

d
λ(κ̃λkx)Y µ

λ (x̂). (2.38)

Определим функцию fM0 , полагая

fM0 (x) =
∑
m≤M

c0
ms̃m(x). (2.39)

Из леммы (4.11) следует, что fM0 аналитическая функция d переменных.
Наконец, положим

fM = fb + fM0 + fMh . (2.40)

Теперь определим полугруппу P t, полагая для f ∈ W 2
2 (D)

(P tf)(x) = (L2) lim
M→∞

E fM(x + σw(t)). (2.41)
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Для бигармонической компоненты fb справедливо

E fb(x + σw(t)) =
E (x+ σw(t))2

2|D|d

∫
∂D

∂f

∂n
dŷ = fb(x) +

σ2t

2|D|d

∫
∂D

∂f

∂n
dŷ.

Ввиду гармоничности fh, имеем

E fMh (x + σw(t)) = fMh (x). (2.42)

Для fM0 , пользуясь представлением из леммы (4.11), получим

E fM0 (x + σw(t)) =
∑
m≤M

c0
m exp

(
−σ

2κ̃2
mt

2

)
s̃m(x) (2.43)

Таким образом

(P tf)(x) = fb(x) +
σ2t

2|D|d

∫
∂D

∂f

∂n
dŷ+

+
∑

c0
m exp

(
−σ

2κ̃2
mt

2

)
s̃m(x) + fh(x). (2.44)

Покажем, что имеет место сходимость P tfM → P tf :

Теорема 2.2. Пусть f ∈ W 2
2 (D), u(t, x) = (P tf)(x) и uM(t, x) = (P tfM)(x).

Тогда существует число C > 0 такое, что

sup
t≥0
‖u(t, ·)− uM(t, ·)‖L2(D) ≤

C

M 2/d
‖f‖W 2

2 (D). (2.45)

Доказательство теоремы полностью аналогично доказательству
теоремы 2.1.

Получим теперь явные формулы для ядра оператора P t. Подставляя в фор-
мулу (2.44) выражение для коэффициентов Фурье c0

m = (f0, s̃m)L2(D) и меняя
порядок интегрирования, получаем

(P tf)(x) = fb(x) +
σ2t

2|D|d

∫
∂D

∂f

∂n
dŷ +

∫
f0(y)R̃t(x, y) dy + fh(x), (2.46)

где

R̃t(x, y) =
∑

s̃m(x)s̃m(y) exp

(
−σ

2κ̃2
mt

2

)
. (2.47)

Подставим в (2.46) f0 = f − fb − fh и fh = H̃(f − fb). Получим

(P tf)(x) =

∫
D

f(y)R̃t(x, y) dy +

∫
∂D

(γ0∂nf)(ŷ) Q̃t(x, ŷ) dŷ, (2.48)
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где

Q̃t(x, ŷ) = χ(x) +
σ2t

2|D|d
+ h̃0(x, ŷ)−

−
∫
D

R̃t(x, u) h̃0(u, ŷ) du−
∫
D

R̃t(x, u)χ(u) du. (2.49)

Вычислим четвёртое слагаемое ядра Q̃t. Первым шагом подставим в разло-
жение R̃t (2.44) явный вид нормированных (4.30) собственных функций:

R̃t(x, u) =
∑ jdλ(κ̃λkx)Y µ

λ (x̂)

ñλµk

jdλ(κ̃λku)Y µ
λ (û)

ñλµk
exp

(
−σ

2κ̃2
λkt

2

)
. (2.50)

Затем воспользуемся известным разложением для ядра Пуассона – Неймана

h̃0(u, ŷ) =
∑ uλ

λ
Y µ
λ (û)Y µ

λ (ŷ) (2.51)

и применим соотношение ортогональности для сферических гармоник (4.12) и
лемму (4.9)∫
D

R̃t(x, u) h̃0(u, ŷ) du =

=
∑ exp

(
−σ2κ̃2

λkt/2
)

ñ2
λµk

jdλ(κ̃λkx)Y µ
λ (x̂)Y µ

λ (ŷ)

1∫
0

yd−1 jdλ(κ̃λky)
yλ

λ
dy =

=
∑ exp

(
−σ2κ̃2

λkt/2
)

ñ2
λµk

jdλ(κ̃λkx)Y µ
λ (x̂)Y µ

λ (ŷ)
jdλ+1(κ̃λk)
λκ̃λk

(2.52)

В случае, когда f удовлетворяет условию разрешимости (2.30), из формулы
(2.49) для ядра на границе можно удалить первое, второе и пятое слагаемые.
При этом получаются следующие формулы для решений:

(P tf)(x) =

∫
D

f(y)R̃t(x, y) dy +

∫
∂D

(γ0f)(ŷ)Q̃t(x, ŷ) dŷ, (2.53)

где

Rt(x, u) = 2
∑(

κ̃λk
jdλ(κ̃λk)

)2
exp(−σ2κ̃2

λkt/2)

κ̃2
λk − (λ+ α)2

jdλ(κ̃λkx)jdλ(κ̃λku)Y µ
λ (x̂)Y µ

λ (û)

(2.54)
и

Q̃t(x, ŷ) = h̃0(x, ŷ)−

− 2
∑ κ̃λk

λ

exp(−σ2κ̃2
λkt/2)

κ̃2
λk − (λ+ α)2

jdλ+1(κ̃λk)(
jdλ(κ̃λk)

)2j
d
λ(κ̃λkx)Y µ

λ (x̂)Y µ
λ (ŷ). (2.55)
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В случае вещественного σ, как и для задачи Дирихле, формула (2.53) име-
ет простой вероятностный смысл. Именно, для фиксированных (t, x) формула
(2.53) задаёт распределение винеровского процесса в момент времени t, выпу-
щенного из точки x ∈ D и отражающегося от границы ∂D по нормали. Функ-
ции Q̃t(x, y) естественно придать смысл накопленного к моменту t в точке y
”скачка нормальной производной” отражающегося винеровского процесса.

2.3 Предельные теоремы
В этом параграфе мы заменим винеровский процесс его аппроксимацией нор-
мированными суммами случайных величин и докажем теоремы о сходимости.

Пусть {ξj}j≥1 – последовательность независимых одинаково распределён-
ных вещественных d-векторов с общим распредением P . Будем предполагать,
что распределение P инвариантно относительно поворотов, случайный вектор
ξ1 имеет единичную матрицу ковариаций, а также для некоторого γ > 0 ко-
нечен экспоненциальный момент E exp(γ|ξ1|). Пусть, кроме того, η(t) – стан-
дартный пуассоновский процесс, не зависящий от {ξj}j≥1. Определим сложный
пуассоновский процесс ζn(t), полагая для n ∈ N, t ∈ [0, T ]

ζn(t) =
1√
n

η(nt)∑
j=1

ξj. (2.56)

Начнём с задачи Дирихле. Ввиду гармоничности fh, имеем

E fMh (x + σζn(t)) = fMh (x). (2.57)

Немного сложнее обстоит дело с f0. Для доказательства аналога формулы
(2.9) воспользуемся интегральным представлением из леммы (4.11):

E sm(x + σζn(t)) =

= (−i)λ (d− 2)!!ωd−1C
2
α

(2π)d

∫
Sd−1

Y µ
λ (p̂)e−iκλkp̂xE e−iσκλkp̂ζn(t) dp̂. (2.58)

Пользуясь инвариантностью ζn(t) относительно поворотов, получаем

aλk = E e−iσκλkp̂ζn(t) = exp

nt ∞∫
−∞

(
e−iσκλky/

√
n − 1

)
P1(dy)

 , (2.59)

где P1 – общее распределение случайных величин ξ1
j (единица в верхнем индексе

указывает на то, что это первая компонента вектора ξj).
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Окончательно, получаем

E fM0 (x + σζn(t)) =
∑
m≤M

c0
mamsm(x), (2.60)

где am – это числа aλk, перенумерованные так же, как соответствующие им
функции sm.

Теорема 2.3. Пусть f ∈ W 2
2 (D), M(n) = nd/4 и

un(t, x) = E fM(n)(x + σζn(t)). (2.61)

Тогда существует такое число C = C(T ) > 0, что справедлива оценка

sup
0≤t≤T

‖u(t, ·)− un(t, ·)‖L2(D) ≤
C√
n
‖f‖W 2

2 (D), (2.62)

где u(t, x) – это точное решение начально-краевой задачи Дирихле (2.1).

Доказательство. Воспользуемся формулой

et(A+B) − etA =

t∫
0

e(t−τ)(A+B)BeτA dτ, (2.63)

в которой положим A = −σ2κ2
m/2 и

B =
σ2κ2

mt

2
+nt

∫ (
e−iσκmy/

√
n−1

)
P1(dy) = nt

∫
g

(
−iσκmy√

n

)
P1(dy), (2.64)

где

g(z) = ez − 1− z − z2

2
− z3

6
. (2.65)

Нетрудно увидеть, что |etA| ≤ 1 и |et(A+B)| ≤ 1. Таким образом для оценки
разности экспонент остаётся оценить B. Очевидно, что∣∣∣∣∣g

(
−iσκmy√

n

) ∣∣∣∣∣ ≤ κ4
my

4

n2
exp

(
κm|y|√

n

)
. (2.66)

Поскольку мы предполагали, что у распределения P существует конечный эк-
поненциальный момент, справедливо неравенство

|B| ≤ nt

∫ ∣∣∣∣∣g
(
−iσκmy√

n

) ∣∣∣∣∣P1(dy) ≤ Cκ4
m

n
, (2.67)

где константа C зависит от T и распределения P1. Воспользуемся ещё тем,
что, согласно (4.17), при m ≤ M существует такая C > 0, что справедливо
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κ2
m ≤ CM 2/d. Оценим с помощью этого неравенства κ4

m = κ2
mκ2

m ≤ CM 2/dm2/d.
Итак, из (2.63) следует, что

|et(A+B) − etB| ≤ T |B| ≤ Cm2/dM 2/d

n
(2.68)

Оценим теперь саму L2-норму разности:

‖un(t, ·)− u(t, ·)‖2
L2(D) ≤

∑
m≤M

|c0
m|2
∣∣∣et(A+B) − etA

∣∣∣2 +
∑
m>M

|c0
m|2 ≤

≤ CM 4/d

n2

∑
m≤M

k4/d|c0
m|2 +

1

M 4/d

∑
m>M

k4/d|c0
m|2 ≤

C

n
‖f‖2

W 2
2 (D). (2.69)

В последнем неравенстве мы положили M(n) = nd/4.

Для задачи Неймана справедливо аналогичное утверждение.

Теорема 2.4. Пусть f ∈ W 2
2 (D) и удовлетворяет условию разрешимости

(2.30). Положим M(n) = nd/4 и

un(t, x) = E fM(n)(x + σζn(t)), (2.70)

где функция fM(n) определена формулой (2.40).
Тогда существует такое C = C(T ) > 0, что справедлива оценка

sup
0≤t≤T

‖u(t, ·)− un(t, ·)‖L2(D) ≤
C√
n
‖f‖W 2

2 (D), (2.71)

где u(t, x) – это точное решение начально-краевой задачи Неймана (2.29).
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Глава 3

Операторный подход к построению
разложения Скорохода вещественного
броуновского движения в шаре с
отражением на границе

В этой главе мы получаем аналог разложения Скорохода для отражающегося
броуновского движения в шаре. Именно, мы покажем, что полугруппа отража-
ющегося процесса отличается от полугруппы свободного процесса на некоторое
операторное семейство, сосредоточенное на границе. Мы будем называть это
семейство накопленным импульсом. Можно показать, что в одномерном слу-
чае это в точности стандартное локальное время на границе. Тем самым при
d = 1 наша конструкция даёт обычное разложение Скорохода. Мы покажем,
что накопленный импульс допускает потраекторное определение как для бро-
уновского движения, так и для его аппроксимаций сложными пуассоновскими
процессами, и докажем предельную теорему для таких аппроксимаций.

Результаты этой главы опубликованы в работе [41].

3.1 Операторные семейства, порождённые
броуновским движением в шаре с
отражением на границе

Нашей целью является построение процессов с мгновенным отражением в d-
мерном шаре D = {x ∈ Rd : x < 1}. Мы будем следовать работе [5], авторы
которой предложили следующую идею. Вместо определения траекторий про-
цесса с отражением ξ̃x(t), мы определим операторное семейство (P t)t≥0. Каж-
дый оператор P t этого семейства переводит начальную функцию f ∈ W 2

2 (D) в
функцию

(P tf)(x) = E f̃(x + ξ(t)),

где f̃ – это некоторое продолжение функции f до функции класса W 2
2,loc(Rd).

Будем считать, что это операторное семейство задаёт одномерные распределе-

34



ния некоторого процесса ξ̃x(t) в том смысле, что верно равенство

(P tf)(x) = E f(ξ̃x(t)).

Так как отражающийся процесс является марковским, (P t)t≥0 определяет все
конечномерные распределения.

Нам потребуются два способа продолжать начальную функцию f ∈ W 2
2 (D)

до класса W 2
2,loc(Rd). В стандартной конструкции (см. [26] или [25]) отражаю-

щегося броуновского движения |w(t)| на [0, ∞) используется формула Танаки
|w(t)| d

= w(t) + ζ(t), где ζ(t) – локальное время. В нашей конструкции отра-
жающийся процесс (аналог |w(t)|) будет связан с продолжением f̃ , заданным
равенством

f̃(x) = f̃0(x) + f̃b(x) + f̃h(x),

тогда как продолжение f

f(x) =
∞∑
m=0

(f, sm)sm(x)

будет отвечать процессу в области (аналог w(t) в стандартной конструкции).
По аналогии с конструкцией Скорохода, разность этих способов продолжения
должна быть связана с процессом, обеспечивающим разворот траектории от
границы, то есть с локальным временем.

Определим теперь две полугруппы P t и Rt, полагая для x ∈ D

(P tf)(x) = E f̃(wx(t)) и (Rtf)(x) = E f(wx(t)).

Их генераторы выражаются через оператор Ã = −∆/2 на области опреде-
ления D(Ã) = W 2

2,loc(Rd).
Именно, генератором полугруппы P t является оператор A с областью опре-

деления D(A) = W 2
2 (D) и действующий по формуле (Af)(x) = (Ãf̃)(x) для

x ∈ D.
ГенераторRt – это операторAN , заданный на области определенияD(AN) =

ker γ1 формулой (ANf)(x) = (Ãf)(x) для x ∈ D.
Найдём удобные формулы для разности полугрупп P t−Rt и покажем, что

она действительно “сосредоточена” на границе ∂D.

Лемма 3.1. Для f ∈ L2(D) справедлива формула

P tf −Rtf = (L2) lim
m→∞

t∫
0

P τ(A− ANΠm)f dτ,

где Πm – это ортогональный проектор на линейную оболочку первых m соб-
ственных функций.
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Доказательство. Для C0-полугруппы Rt и f ∈ W 2
2 (D), не лежащей вообще

говоря в D(AN), справедливо равенство

Rtf − f = AN

t∫
0

Rτf dτ

(см. [42], теорема 2.4).
Чтобы внести оператор AN под интеграл, воспользуемся замкнутостью опе-

ратора AN

AN = (s) lim
m→∞

ANΠm

и тем, что Πmf ∈ D(AN). Получим

Rtf − f = (L2) lim
m→∞

t∫
0

P τANΠmf dτ. (3.1)

В этом вычислении мы, кроме прочего, учли что ΠmR
τ = RτΠm = P τΠm.

Для оператора P t то же самое получается автоматически, так как f ∈ D(A)

P tf − f = A

t∫
0

P τf dτ =

t∫
0

P τAf dτ. (3.2)

Вычитая формулу (3.1) из (3.2), получим утверждение леммы.

Вычислим указанную разность и покажем, что она выражается в терминах
некоторого оператора, заданного на W 1/2

2 (∂D).

Лемма 3.2. Для f ∈ L2(D) справедливо соотношение

P tf(x)−Rtf(x) =

∫
∂D

Qt(x, ŷ)(γ1f)(ŷ) dŷ, (3.3)

где

Qt(x, ŷ) =
1

2

t∫
0

Rτ(x, ŷ) dτ.

Доказательство. Для начала заметим, что P tf0 − Rtf0 = 0, и поэтому доста-
точно вычислить действие разности полугрупп на fb + fh.[

A− ANΠm

]
(fh + fb) = Ã

(
f̃h + f̃b − Πmfh − Πmfb

)
. (3.4)
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Заметим, что Ãf̃h = 0. Вычислим остальные слагаемые

f̃b − Πmfh − Πmfb = f̃b −
m∑
l=0

(fh, sl) sl −
m∑
l=0

(fb, sl) sl =

=

∫
∂D

dŷ (γ1f)(ŷ)

χ(x)−
m∑
l=0

(h(·, ŷ), sl) sl(x)︸ ︷︷ ︸
B1

−
m∑
l=0

(χ, sl) sl(x)︸ ︷︷ ︸
B2

 (3.5)

Вычислим B2.

B2 =
1

2|D|d

m∑
l=0

(x2, sl)sl(x) =

=
1

2|D|d

m∑
l=0

(x2 − 2x, sl)sl(x) +
1

2|D|d

m∑
l=0

(2x, sl)sl(x) =

=
x2 − 2x

2|D|d
+ o(1) +

1

|D|d

m∑
l=0

(x, sl)sl(x) (3.6)

В последнем равенстве мы воспользовались тем, что функция g(x) = x2−2x
удовлетворяет условию Неймана, и таким образом ряд по sm для неё сходится
в L2.

Подставим g(x, ŷ) = h(x, ŷ) + x/|D|d в формулу для B1

B1 =
m∑
l=0

(g(·, ŷ), sl)sl(x)− 1

|D|d

m∑
l=0

(x, sl)sl(x). (3.7)

Нетрудно убедиться, пользуясь явным выражением для h, что функция g
удовлетворяет соотношению

∂g

∂nx

∣∣∣∣
∂D

= δ(x̂− ŷ). (3.8)

Коэффициент в первом слагаемом (3.7) вычисляется при помощи формулы
Грина и (3.8)

(g(·, ŷ), sl) =
1

−κ2
l

∫
D

g(z, ŷ)∆sl(z) dz =

=
1

κ2
l

∫
∂D

sl(ẑ)
∂g

∂nz
(ẑ, ŷ) dS(z) =

1

κ2
l

sl(ŷ). (3.9)
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Подставляя (3.9) в (3.7), получим

B1 =
m∑
l=0

1

κ2
l

sl(x)sl(ŷ)− 1

|D|d

m∑
l=0

(x, sl)sl(x). (3.10)

Итак, для ядра в формуле (3.5) имеем

χ(x)−B1 −B2 =
x

|D|d
−

m∑
l=0

1

κ2
l

sl(x)sl(ŷ) + o(1),

где o(1) стремится к нулю в L2 при m→∞.
Подействуем на предыдущее равенство оператором P τ Ã

P τ Ã

(
x

|D|d
−

m∑
l=0

1

κ2
l

sl(x)sl(ŷ) + o(1)

)
=

=
1

2
P τ

m∑
l=0

sl(x)sl(ŷ) + o(1) =
1

2
Rτ(x, ŷ) + o(1), (3.11)

где o(1) стремится к нулю в L2 при m→∞.

Определим оператор Qt, полагая для g ∈ W 1/2
2 (∂D)

(Qtg)(x) =

∫
∂D

Qt(x, ŷ)g(ŷ) dS(y).

Другая полезная формула для Qt получается из (3.1):

(Qtg)(x) = lim
m→∞

t∫
0

P τ(A− ANΠm)G(x) dτ, (3.12)

где G(x) = gh(x) + gb(x).
Из доказанного выше следует, что справедливы теоремы 4.1, 4.2 и 4.3.

Теорема 3.1. Операторные семейства (Rt)t≥0 и (Qt)t≥0 удовлетворяют сле-
дующим эволюционным соотношениям

Rt+s = RtRs,

Qt+s = Qt +RtQs.

При этом R0 = I, Q0 = 0.

Теорема 3.2. При всех t > 0 и f ∈ D(AN) справедливо соотношение
∂

∂t
Rtf =

1

2
ANRtf.

Теорема 3.3. При всех t > 0 и g ∈ W 1/2
2 (∂D) справедливо соотношение

∂

∂t
Qtg =

1

2

∫
Rt(x, ŷ)g(ŷ) dS(y).
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3.2 Конструкция случайного накопленного
импульса

В предыдущем параграфе мы построили операторные семейства (Rt)t≥0 и
(Qt)t≥0. В этом параграфе мы покажем, что есть естественный способ опреде-
лить эти операторы как усреднение некоторых случайных операторов, задан-
ных потраекторно.

Определим случайный оператор Pτ = Pτ [w(·)], полагая

(Pτsm)(x) = eiw1(τ)κmsm(x), (3.13)

(Pτfb) = f̃b(x+ w(τ)), (3.14)

(Pτfh) = f̃h(x+ w(τ)). (3.15)

Отметим, что в определение Pτ входит только первая компонента w1(τ) вине-
ровского процесса w(t). Это связано со сферической инвариантностью распре-
деления w(t).

Заметим, что EPτ = P τ , и определим оператор случайного накопленного
импульса Qt = Qt[w(·)], пользуясь формулой (3.12):

(Qtg)(x) = lim
m→∞

t∫
0

Pτ(A− ANΠm)G(x) dτ, (3.16)

где

G(x) = (H0g)(x) + χ(x)

∫
∂D

g(ŷ) dS(y).

Теорема 3.4. Предел в правой части (3.16) существует в смысле L2 (H, µ),
где H = D × Ω и dµ = dx× dP.

Доказательство. Мы будем пользоваться формулой (3.11), в которой следует
заменить P τ на Pτ

(
Qtg

)
(x) =

1

2
lim
m→∞

∫
∂D

t∫
0

g(ŷ)Pτ
m∑
l=0

sl(x)sl(ŷ) dS(y) dτ.

Достаточно доказать, что при каждом t > 0 последовательность

Ψm(x, w(·)) =

∫
∂D

t∫
0

g(ŷ)Pτ
m∑
l=0

sl(x)sl(ŷ) dS(y) dτ

фундаментальна в L2(H, µ).
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Пусть m > n. Тогда

‖Ψm −Ψn‖2
L2(H,µ) =

=

∫
D

E

∣∣∣∣∣∣
∫
∂D

t∫
0

g(ŷ)
m∑

l=n+1

eiκlw(t)sl(x)sl(ŷ) dS(y) dτ

∣∣∣∣∣∣
2

dx =

=

∫
D

E

∣∣∣∣∣∣
t∫

0

m∑
l=n+1

eiκlw(t)glsl(x) dτ

∣∣∣∣∣∣
2

dx (3.17)

Нам понадобится легко проверяемая формула∣∣∣∣∣∣
t∫

0

ϕ(τ) dτ

∣∣∣∣∣∣
2

= 2

t∫
0

dτ1

τ1∫
0

dτ2 Re
(
ϕ(τ1)ϕ(τ2)

)
(3.18)

для ϕ ∈ L1[0, t].
Используя (3.18), получаем

E

∫
D

∣∣∣∣∣
∫ t

0

m∑
l=n+1

eiκlw(t)glsl(x)

∣∣∣∣∣
2

dx =

= 2E

t∫
0

dτ1

τ1∫
0

dτ2 Re

(
m∑

l=n+1

eiκl
(
w(τ2)−w(τ1)

)
|gl|2

)
=

= 2

t∫
0

dτ1

τ1∫
0

dτ2 Re

(
m∑

l=n+1

e−κ
2
l (τ2−τ1)/2|gl|2

)

Имеем

‖Ψm −Ψn‖2
L2(H,µ) ≤ Ct

m∑
l=n+1

|gl|2

κ2
l

.

Покажем, что выражение в предыдущей формуле стремится к нулю. Для
этого заметим, что g = γ1G, где G = gh+gb ∈ W 2

2 (D). Поскольку, как известно,
D(AN) = W 1

2 (D) (см. [43], стр. 263), верно
√
−ANG ∈ L2(D). По формуле

Грина имеем

gl =

∫
∂D

(γ1G)(ŷ)sl(ŷ) dŷ =

∫
D

∇G∇sl dy =

=
(√
−ANG,

√
−ANsl

)
= κl

(√
−ANG, sl

)
.
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Таким образом
∞∑
l=1

|gl|2

κ2
l

=
∞∑
l=1

∣∣∣(√−ANG, sl

)∣∣∣2 ≤ ∞.

Покажем, что оператор Qt получается как усреднение операторов Qt по
траекториям w(·).

Теорема 3.5. Для любой функции g ∈ W 1/2
2 (∂D) выполнено

E
(
Qtg

)
(x) = (Qtg)(x).

Доказательство. Для доказательства снова воспользуемся формулой (3.11), в
которой следует заменить P τ на Pτ

E
(
Qtg

)
(x) = E

1

2
lim
m→∞

∫
∂D

t∫
0

g(ŷ)Pτ
m∑
l=0

sl(x)sl(ŷ) dS(y) dτ =

=
1

2
lim
m→∞

∫
∂D

t∫
0

g(ŷ
m∑
l=0

E eiκlw(t)sl(x)sl(ŷ) dS(y) dτ =

=
1

2

∫
∂D

t∫
0

Rτ(x, ŷ)g(ŷ) dSy) dτ = (Qtg)(x).

3.3 Случайное блуждание в шаре с
отражением на границе

Построение операторных семейств, порождённых
случайным блужданием

В этом разделе мы построим операторные семейства P t
n и Qt

n, а так же их
случайные аналоги P tn и Qt

n, для процесса

ζn(t) =
1√
n

η(nt)∑
j=1

ξj,

где (ξj)j≥1 – н.о.р. случайные d-вектора с общим распределением P , инвари-
антным относительно вращений, и E (ξ1

1)2 = 1 (верхний индекс указывает на
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номер компоненты), а (η(t))t≥0 – не зависящий от них стандартный пуассонов-
ский процесс.

Положим для f ∈ W 2
2 (D) и x ∈ D

(P t
nf)(x) = E f̃(x + ζn(t)) и (Rt

nf)(x) = E f(x + ζn(t)).

Так же как в случае винеровского процесса генераторы A и AN двух полу-
групп выражались в терминах оператора Ã = −∆/2 в W 2

2,loc(Rd), операторы
An и AN

n представляются в виде

(Anf)(x) = (Ãnf̃)(x) и (AN
n f)(x) = (Ãnf)(x),

где оператор Ãn, заданный на D(Ãn) = W 2
2,loc(Rd), действует по формуле

(Ãnf)(x) = 2n

∫
Rd

(
f

(
x +

y√
n

)
− f(x)

)
P(dy).

При этом D(An) = D(A) = W 2
2 (D) и D(AN

n ) = D(AN) = ker γ1.
Можно показать (см. [39]), что

(Ansm)(x) = −λnmsm(x),

где

λnm = −2n

∫
R

(
eiκmy/

√
n − 1

)
P1(dy).

Относительно чисел λnm справедливо утверждение.

Лемма 3.3. 1) При любом фиксированном n последовательность (λnm)m≥0

ограничена.
2) При любом фиксированном j

lim
n→∞

λnm = κ2
m.

Аналогично тому, как это было сделано выше для винеровского процесса,
доказывается следующая лемма.

Лемма 3.4. Справедлива формула

P t
nf −Rt

nf = (s) lim
m→∞

t∫
0

P τ(A− ANΠm)f dτ, (3.19)

где (s) lim – это сильный предел в L2(D).
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Аналог леммы (3.2) выглядит несколько иначе. Вплоть до формулы (3.11)
вычисления проводятся точно так же, как там, с точностью до замены P τ и Ã
на P τ

n и Ãn соответственно. Имеем

P τ
n Ãn

(
x

|D|d
−

m∑
l=0

1

κ2
l

sl(x)sl(ŷ) + o(1)

)
=

=
1

2
P τ

m∑
l=0

λnl
κ2
l

sl(x)sl(ŷ) + o(1) =
1

2
R̃τ
n(x, ŷ) + o(1), (3.20)

где

R̃t(x, ŷ) =
∑ λnm

κ2
m

e−λ
n
mt/2sm(x)sm(ŷ).

Итак, доказана следующая лемма.

Лемма 3.5. Справедливо соотношение

P t
nf(x)−Rt

nf(x) =

∫
∂D

Qt
n(x, ŷ)(γ1f)(ŷ) dS(y), (3.21)

где

Qt(x, ŷ) =
1

2

t∫
0

R̃τ
n(x, ŷ) dτ.

Из доказанного выше следует, что справедливы теоремы 3.6, 3.7 и 3.8.

Теорема 3.6. Операторные семейства (Rt
n)t≥0 и (Qt

n)t≥0 удовлетворяют сле-
дующим эволюционным соотношениям

Rt+s
n = Rt

nR
s
n,

Qt+s
n = Qt

n + R̃t
nQ

s
n.

При этом R0
n = I, Q0

n = 0.

Теорема 3.7. При всех t > 0 и f ∈ D(AN
n ) справедливо соотношение

∂

∂t
Rt
nf =

1

2
AN
n R

t
nf.

Теорема 3.8. При всех t > 0 и g ∈ W 1/2
2 (∂D) справедливо соотношение

∂

∂t
Qt
ng =

1

2

∫
∂D

R̃t
n(x, ŷ)g(ŷ) dS(ŷ) .
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Далее, по аналогии с (3.13) определим случайный оператор Pτn = Pτn [ζn(·)],
полагая

(Pτnsm)(x) = eiζ
1
n(τ)κmsm(x), (3.22)

(Pτnfb) = f̃b(x+ ζn(τ)), (3.23)

(Pτnfh) = f̃h(x+ ζn(τ)). (3.24)

Отметим, что в силу сферической инвариантности распределения ζn достаточно
определить Pτn пользуясь только первой компонентой ζn.

Заметим, что EPτn = P τ
n , и определим оператор случайного накопленного

импульса Qt
n = Qt

n[ζn(·)], пользуясь формулой (3.12):

(Qt
ng)(x) = lim

m→∞

t∫
0

Pτn(An − AN
n Πm)G(x) dτ , (3.25)

где

G(x) = (Hg)(x) + χ(x)

∫
∂D

g(ŷ) dS(y) .

Справедливо утверждение об усреднении Qt
n, аналогичное 3.5.

Теорема 3.9. Для любой функции g ∈ W 1/2
2 (∂D) выполнено

E
(
Qt
ng
)

(x) = (Qt
ng)(x).

3.4 Предельные теоремы о сходимости
операторов

Покажем теперь, что операторы Rt
n и Qt

n сильно сходятся при n → ∞ к Rt и
Qt.

Теорема 3.10. Пусть f ∈ D(AN). Тогда∥∥Rt
nf −Rtf

∥∥
L2(D)

≤ C
√
t√
n
‖f‖W 2

2 (D).

Доказательство. Так как f принадлежит D(AN), справедливо равенство

‖Rt
nf −Rtf‖2

L2(D) =
∞∑
m=0

|(f, sm)|2
∣∣∣e−λnmt/2 − e−κ2

mt/2
∣∣∣2 ≤

≤
∑
m≤M

|(f, sm)|2
∣∣∣e−λnmt/2 − e−κ2

mt/2
∣∣∣2︸ ︷︷ ︸

I1

+ 4
∑
m>M

|(f, sm)|2︸ ︷︷ ︸
I2

,
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где M = M(n, t) выберем позже.
Согласно (4.21), при m ≤ M справедливо неравенство κ2

m ≤ CM 2/d с неко-
торой константой C > 0. Нетрудно видеть (см. [39]), что∣∣∣e−λnmt/2 − e−κ2

mt/2
∣∣∣ ≤ Cκ4

m

n
≤ CM 2/dm2/d

n
.

Тогда

I1 ≤
CM 4/d

n2

∑
m≤M

m4/d|(f, sm)|2 ≤ CM 4/d

n2
‖f‖2

W 2
2 (D).

Для суммы I2 имеем

I2 ≤
1

M 4/d

∑
m>M

m4/d|(f, sm)|2 ≤ C

M 4/d
‖f‖2

W 2
2 (D).

Окончательно,

‖Rt
nf −Rtf‖2

L2(D) ≤ C

(
M 4/d

n2
+

1

M 4/d

)
‖f‖2

W 2
2 (D) ≤

Ct

n
‖f‖2

W 2
2 (D)

при M = (n/t)d/4.

Теорема 3.11. Справедливо равенство

Rt = (s) lim
n→∞

Rt
n,

где (s) lim – это сильный предел в L2.

Данное утверждение следует из предыдущей теоремы и теоремы Банаха-
Штейнгауза.

Докажем теперь, что операторы Qt
n сходятся к Qt.

Теорема 3.12. Существует такое число C > 0, что для любой функции
g ∈ W 1/2

2 (∂D) выполнено неравенство

‖Qt
ng −Qtg‖2

L2(D) ≤
Ct3/8

n3/8
‖g‖2

W
1/2
2 (∂D)

.

Доказательство. По функции g ∈ W 1/2
2 (∂D) построим G = gh + gb ∈ W 2

2 (D),
полагая

G(x) =

∫
∂D

g(ŷ)
(
χ(x) + h0(x, ŷ)

)
dS(y) .

Используя (3.21) и (3.12), получаем

‖Qt
ng −Qtg‖2

L2(D) = ‖Rt
nG−RtG‖2

L2(D).
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Можно показать, для существует следующая двусторонняя оценка нормы
‖g‖

W
1/2
2 (∂D)

‖g‖2

W
1/2
2 (∂D)

�
∑

m1/d|(G, sm)|2

Для некоторого M = M(n, t), которое мы подберём позже, имеем

‖Rt
nG−RtG‖2

L2(D) =
∞∑
m=0

|(G, sm)|2
∣∣∣e−λnmt/2 − e−κ2

mt/2
∣∣∣2 =

=
∑
m≤M

|(G, sm)|2
∣∣∣e−λnmt/2 − e−κ2

mt/2
∣∣∣2 + 4

∑
m>M

|(G, sm)| ≤

≤ CM 3/d

n2

∑
m≤M

m1/d|(G, sm)|2 +
1

M 1/d

∑
m>M

m1/d|(G, sm)|2 ≤

≤ C

(
M 3/d

n2
+

1

M 1/d

)
‖g‖2

W
1/2
2 (∂D)

=
Ct3/4

n3/4
‖g‖2

W
1/2
2 (∂D)

.

В последнем равенстве мы положили M = (n/t)1/4.
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Глава 4

Конструкция симметричных
скачкообразных процессов Леви в
гладких ограниченных областях с
отражением на границе

В последней части работы мы построим отражающуюся версию симметрично-
го чисто скачкообразного процесса Леви в произвольной гладкой ограниченной
области. Как и в случае броуновского движения, разность полугрупп свобод-
ного процесса и процесса с отражением окажется сосредоточена на границе.
Далее мы построим оператор случайного накопленного импульса. Наконец, мы
коротко скажем какие изменения следует внести в конструкцию в случае сим-
метричных устойчивых процессов.

Результаты настоящей главы опубликованы в работе [44].

4.1 Операторные семейства, порождённые
скачкообразным процессом Леви с
отражением на границе

Идею данного параграфа можно изложить в двух словах, хотя её формальное
изложение потребует некоторых усилий. К каждой точке x ∈ D привяжем ша-
ровую окрестность x+D(x) b D, где D(x) – шар радиуса r(x) > 0 с центром в
нуле. Для функции f ∈ W 2

2 (D) построим в каждой окрестности последователь-
ность касательных функций f̃M(x, · ), M ∈ N, сходящуюся в этой окрестности
к f . При этом последовательность fM мы построим так, что каждая из функций
fM в отличие от f будет определена во всём Cd, и лежит в области определения
оператора L. С помощью такой последовательности касательных функций мы
определим действие оператора A на f , полагая

Af(x) = lim
M→∞

LyfM(x,y)
∣∣∣
y=0

.
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Такие касательные семейства мы будем несколько неаккуратно называть
продолжениями функции f . Разумеется, таких касательных семейств существу-
ет бесконечно много. Как отмечалось во введении, нам потребуется не одно, а
два таких продолжения (и два оператора соответственно), при этом роль после-
довательностей f̃M и fM будут играть частичные суммы специально выбранных
рядов.

Построение касательного семейства начнём с разложения начальной функ-
ции f ∈ W 2

2 (D) по лемме 4.13:

f = f0 + fb + fh,

где f0 ∈ N 0(D), fh ∈ G2
2(D) и fb = a(f, χ)χ. Рассмотрим сначала гармониче-

скую часть fh. Для любого вектора y ∈ D(x), имеет место равенство

fh(x + y) =
∑

(fh, Y
µ
λ )

(
y

r(x)

)λ
Y µ
λ (ŷ),

где скалярное произведение берётся в L2(∂(x+D(x)). Ряд сходится равномерно,
и хотя сама сумма ряда зависит только от суммы x + y, частичные суммы

fhM(x,y) =
∑
λ≤M

(fh, Y
µ
λ )

(
y

r(x)

)λ
Y µ
λ (ŷ), M ∈ N,

зависят от x ∈ D и y ∈ D(x) по отдельности. Кроме того, fhM(x,y) как функ-
ция y допускает аналитическое продолжение в Cd. При этом для y 6∈ D(x)
предела при M →∞ вообще говоря нет. Заметим также, что fhM(x, 0) = fh(x)
при всех M ∈ N.

Далее, построим продолжение функции f0. Для этого воспользуемся её раз-
ложением в ряд по sm, а затем переразложим в этом ряду сами функции sm.
Как в случае fh, для y ∈ D(x) имеет место равенство

sm(x + y) =
∑

cmλµ(x)jdλ(κmy)Y µ
λ (ŷ),

причём ряд сходится равномерно. Обозначим частичные суммы этого ряда че-
рез smM(x,y) для x ∈ D и y ∈ D(x)

smM(x,y) =
∑
λ≤M

cmλµ(x)jdλ(κmy)Y µ
λ (ŷ).

По второму аргументу функция smM имеет аналитическое продолжение в Cd,
а также при всех M ∈ N справедливо равенство smM(x, 0) = sm(x). Так как
smM ∈ D(L), а так же в силу формулы (4.36), функции sm являются собствен-
ными функциями L, отвечающими одному и тому же собственному значению
L(κm). При всех y ∈ Cd справедливо равенство

−LysmM(x,y) = L(κm)smM(x,y).
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Определим теперь частичную сумму f0M(x,y):

f0M(x,y) =
∑
m≤M

(f0, sm)smM(x,y) x ∈ D,y ∈ Rd.

Так как smM(x, 0) = sm(x), имеет место сходимость

f0M(·, 0)→ f0 в W 2
2 (D) при M →∞.

Вопрос сходимости f0M(x,y) к f0 является более сложным и по всей видимости
требует дополнительных знаний о поведении собственных функций.

Наконец, определим первое продолжение f̃M , полагая для x ∈ D и y ∈ Cd

f̃M(x,y) = fb(x + y) + fhM(x,y) + f0M(x,y).

Выражения f̃M(x,y) могут не иметь пределов при y 6∈ D(x). Сходимость внут-
ри шара y ∈ D(x) требует дополнительного исследования собственных функ-
ций sm, однако при y = 0 из того, что f0 ∈ N (D) и smM(x, 0) = sm(x) следует,
что

f̃M(·, 0)→ f при M →∞ в W 2
2 (D).

Второе разложение fM построим, разлагая f в ряд по sm. Положим для
x ∈ D и y ∈ Cd

fM(x,y) =
∑
m≤M

(f, sm)smM(x,y).

Как отмечалось выше, разложение функции f по sm сходится лишь в W 1
2 (D),

но не в W 2
2 (D):

fM(·, 0)→ f при M →∞ в W 1
2 (D).

Заметим, что так определённые функции f̃M(x,y) и fM(x,y) лежат в об-
ласти определения D(L) по переменной y. Определим по ним две полугруппы,
полагая для x ∈ D

(P tf)(x) = lim
M→∞

Ef̃M (x, ξ(t)) и (Rtf)(x) = lim
M→∞

EfM (x, ξ(t)) .

Генераторы этих полугрупп выражаются через генератор −L “свободного”
процесса Леви ξ (формула (0.4)). Именно, генератор −A полугруппы P t дей-
ствует на области определения D(A) = W 2

2 (D) по формуле

(Af)(x) = lim
M→∞

(Lf̃M)(x, 0) при x ∈ D.

Оператор L здесь и далее действует по второй переменной.
Генератор −AN полугруппы Rt действует на области определения D(AN) =

N (D) ⊂ W 2
2 (D) по формуле

(ANf)(x) = lim
M→∞

(LfM)(x, 0) при x ∈ D.
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4.2 Граничный оператор
В настоящем параграфе мы покажем, что разность полугрупп P t и Rt сосре-
доточена на границе области ∂D. Это утверждение является аналогом того
факта, что процесс локального времени живёт на границе.

Имея эту задачу в виду, найдём удобные формулы для разности полугрупп.

Лемма 4.1. Для f ∈ W 2
2 (D) и x ∈ D справедливо соотношение

(P tf)(x)− (Rtf)(x) = − lim
M→∞

∫ t

0

P τL
(
f̃M − fM

)
(x, 0) dτ .

Указанный предел существует также в смысле W 2
2 (D).

Доказательство. Для функции f ∈ W 2
2 (D), вообще говоря не лежащей в об-

ласти определения генератора −AN полугруппы Rt можно написать (см. [42],
теорема 2.4)

Rtf − f = −AN

∫ t

0

Rτf dτ ,

однако внести генератор −AN под интеграл нельзя. Для этого заменим функ-
цию f её аппроксимацией в нужном классе

fM =
∑
m≤M

(f, sm)sm.

Так как Rτf = (L2) limRτfM , получим

Rtf − f = −AN lim
M→∞

∫ t

0

RτfM dτ .

Воспользуемся теперь замкнутостью оператора AN , из которой следует, что

AN lim
M→∞

fM = lim
M→∞

ANfM в L2(D)

чтобы внести генератор в интеграл

Rtf − f = − lim
M→∞

∫ t

0

RτANfM dτ .

Из определения оператора AN и того факта, что (fM)M(x, 0) = fM(x, 0) следует
равенство ANfM(x, 0) = LfM(x, 0). Таким образом мы доказали

(Rtf)(x)− f(x) = − lim
M→∞

∫ t

0

RτLfM(x, 0) dτ .
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Так как генератор −A полугруппы P t определён во всём пространстве W 2
2 (D),

мы можем сразу написать

P tf − f = −
∫ t

0

P τAf dτ .

Воспользуемся определением оператора A чтобы получить

(P tf)(x)− f(x) = − lim
M→∞

∫ t

0

P τLf̃M(x, 0) dτ .

Для завершения доказательства остаётся вычесть из формулы для P t формулу
для Rt. При этом под интегралом в формуле для Rt можно заменить Rτ на P τ ,
тогда как в формуле для P t такую замену сделать вообще говоря нельзя.

Пользуясь доказанной леммой, вычислим разность полугрупп и покажем,
что она выражается в терминах некоторого оператора, заданного на W 1/2

2 (D).

Лемма 4.2. Для f ∈ W 2
2 (D) справедливо соотношение

(P tf)(x)− (Rtf)(x) =

∫
∂D

Qt(x, z)(γ1f)(z) dS(z),

где

Qt(x, z) =
1

2

∫ t

0

R̃τ(x, z) dτ

и

R̃τ(x, z) =
∞∑
l=0

L(κl)
κ2
l

e−tL(κl)sl(x)sl(z).

Доказательство. Для начала вычислим разность продолжений

f̃M(x) = fb(x + y) + fhM(x,y) + f0M(x,y)

и
fM(x,y) = (fb)M(x,y) + (fh)M(x,y) + (f0)M(x,y),

стоящую под интегралом. Заметим, что на f0 продолжения совпадают:

f̃0M − (f0)0M = 0.

а значит разность полугрупп требуется вычислять лишь на сумме fh + fb. Вы-
бросим слагаемые fhM , так как L f̃hM(x, 0) = 0.

Теперь нам достаточно найти выражение для разности fb − (fb)M − (fh)M .
Перепишем явно все три функции в терминах интегралов по границе от γ1f .
Для fh имеем:

fh(x) =

∫
∂D

dS(z)(γ1f)(z)

[
h(x, z)−

∫
∂D

dS(w)(γ1χ)(w)h(x,w)

]
.
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Следовательно,

(fh)M(x,y) =

∫
∂D

dS(z)(γ1f)(z)ϕM(x,y, z),

где

ϕM(x,y, z) =
M∑
l=0

(
h(·, z)−

∫
∂D

dS(w)h(·,w)(γ1χ)(w), sl

)
slM(x,y).

Для fb:

(fb)M(x,y) =

∫
∂D

dS(z)(γ1f)(z)ψM(x,y),

где

ψM(x,y) =
M∑
l=0

(χ, sl)slM(x,y).

Теперь нам необходимо вычислить разность

χ(x + y)− ϕM(x,y, z)− ψM(x,y).

Запишем отдельно сумму ϕM + ψM в следующем виде:

ϕM(x,y, z) + ψM(x,y) =

=
M∑
l=0

(
χ(·)−

∫
∂D

dS(w)(γ1χ)(w)h(·,w), sl

)
slM(x,y)+

+
M∑
l=0

(
h(·, z), sl

)
slM(x,y).

Функция

θ(x) = χ(x)−
∫
∂D

dS(w)(γ1χ)(w)h(x,w)

лежит в N (D), а значит ряд по sl сходится к ней в W 2
2 (D). Учитывая это,

получаем

M∑
l=0

(θ, sl) slM(x,y) = χ(x)−
∫
∂D

dS(w)(γ1χ)(w)h(x,w) + r
(0)
M (x) + r

(1)
M (x,y)

где остаточные члены r
(0,1)
M равны

r
(0)
M (x) =

∞∑
l=M+1

(θ, sm)sm(x), r
(1)
M (x,y) =

M∑
l=0

(θ, sm)
(
slM(x,y)− sl(x)

)
.
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Для вычисления последнего слагаемого нам потребуется соотношение(
h(·, z), sl

)
=

1

κ2
l

sl(z),

которое нетрудно проверить при помощи формулы Грина.
Итак, мы получили формулу для разности

χ(x + y)− ϕM(x,y, z)− ψM(x,y) =

=
M∑
l=0

1

κ2
l

sl(x)sl(z) +

∫
∂D

dS(w)(γ1χ)(w)h(x,w)+

+ r
(0)
M (x) + r

(1)
M (x,y) + r

(2)
M (x,y, z)

где остаточный член r(2)
M равен

r
(2)
M (x,y, z) =

M∑
l=0

1

κ2
l

(
slM(x,y)− sl(x)

)
sl(z).

Подействуем теперь на полученное равенство оператором −L и положим
y = 0. Так как второе слагаемое является гармонической функцией, получим

− Ly

(
χ(x + y)− ϕM(x,y, z)− ψM(x,y)

)∣∣∣
y=0

=

=
M∑
l=0

L(κl)
κ2
l

sl(x)sl(z) + Lr
(0)
M (x).

В этой формуле мы учли, что второй и третий остаточные члены тождественно
равны нулю, так как slM(x, 0) = sl(x).

Таким образом мы получили формулу для разности полугрупп

(P tf)(x)− (Rtf)(x) =

= (W 2
2 ) lim

M→∞

1

2

∫ t

0

dτ

∫
∂D

dS(z) (γ1f)(z) P τ

(
M∑
l=0

L(κl)
κ2
l

sl(x)sl(z)

)
, (4.1)

так как остаточный член

RM(x) =

∫ t

0

dτ

∫
∂D

dS(z)(γ1f)(z)P τLr
(0)
M (x)

стремится к нулю в W 2
2 (D). Действительно,

RM(x) = Cf

∞∑
l=M+1

cl(θ, sl)sl(x),
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где cl = 1−exp(−tL(κl)) ≤ 1, а ряд для θ сходится вW 2
2 (D) как было отмечено

выше.

Определим оператор Qt, полагая для g ∈ W 1/2
2 (D)

(Qtg)(x) =

∫
∂D

Qt(x,y)g(y) dS(y) .

Другая полезная формула получается из предыдущей леммы. Построим по g ∈
W

1/2
2 (∂D) функцию Gb ∈ χ · C

Gb(x) = χ(x)

∫
∂D

g(z) dS(z) (4.2)

и Gh ∈ G2
2(D)

Gh(x) =

∫
∂D

h(x, z)g(z) dS(z) . (4.3)

Тогда G = Gb +Gh ∈ W 2
2 (D), и оператор Qt действует на g как

(Qtg)(x) = lim
M→∞

∫ t

0

P τL
(
G̃M −GM

)
(x, 0) dτ . (4.4)

Из доказанного выше следует, что справедливы теоремы 4.1, 4.2 и 4.3.

Теорема 4.1. Операторные семейства (Rt)t≥0 и (Qt)t≥0 удовлетворяют сле-
дующим эволюционным соотношениям

Rt+s = RtRs,

Qt+s = Qt + R̃tQs.

При этом R0 = I, Q0 = 0.

Теорема 4.2. При всех t > 0 и f ∈ L2(D) справедливо соотношение

∂

∂t
Rtf =

1

2
ANRtf.

Теорема 4.3. При всех t > 0 и g ∈ W 1/2
2 (∂D) справедливо соотношение

∂

∂t
Qtg =

1

2

∫
∂D

R̃t(x,y)g(y) dS(y) .
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4.3 Конструкция случайного накопленного
импульса

В предыдущем параграфе мы построили операторные семейства (Rt)t≥0 и
(Qt)t≥0. Теперь мы покажем, что есть естественный способ определить их как
усреднение некоторых случайных операторов, заданных потраекторно.

Определим случайный оператор Pτ = Pτ [ξ(·)] на области определения
W 2

2 (D) = N 0(D)⊕BG2,0
2 (D), полагая для f ∈ N 0(D)

(Pτf)(x) =
∑

eiκmξ1(τ)(f, sm)sm(x),

и для f ∈ BG2,0
2 (D)

(Pτf)(x) = f(x + ξ(τ)).

Очевидно, что P t = EP t. Мы могли бы определить оператор Pτ как сдвиг на
ξ(τ) на всём W 2

2 (D), и при этом свойство P t = EPτ сохранилось бы, так как

Eeiκmξ1(τ)sm(x) = e−τL(κm)sm(x) = Esm(x + ξ(τ)),

однако данное определение оказывается удобнее с вычислительной точки зре-
ния. Отметим, что в определение Pτ входит только первая компонента ξ1(τ)
процесса ξ(t). Это связано со сферической инвариантностью процесса ξ.

Определим теперь оператор Qt = Qt[ξ(·)], пользуясь формулой (4.4):

(Qtg)(x) = lim
M→∞

∫ t

0

PτL
(
G̃M −GM

)
(x, 0) dτ , (4.5)

где G = Gb +Gh ∈ W 2
2 (D), а Gb и Gh определены формулами (4.2), (4.3).

Теорема 4.4. Предел в правой части (4.5) существует в смысле L2(H, µ), где
H = D × Ω и dµ = dx× dP.

Доказательство. Будем пользоваться формулой (4.4), в которой следует за-
менить P τ на Pτ :

(Qtg)(x) =
1

2
lim
M→∞

∫
∂D

∫ t

0

g(z)Pτ
M∑
l=0

L(κl)
κ2
l

sl(x)sl(z) dS(z) dτ .

Достаточно доказать, что при каждом t > 0 последовательность

Ψm(x, ξ(·)) =

∫
∂D

∫ t

0

g(ŷ)Pτ
M∑
l=0

L(κl)
κ2
l

sl(x)sl(z) dS(z) dτ

фундаментальна в L2(H, µ).
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Рассмотрим норму разности Ψm −Ψn, m > n

‖Ψm −Ψn‖2
L2(H,µ) =

=

∫
D

E

∣∣∣∣∣
∫
∂D

∫ t

0

g(z)
m∑

l=n+1

L(κl)
κ2
l

Pτsl(x)sl(z) dS(z) dτ

∣∣∣∣∣
2

dx =

=

∫
D

E

∣∣∣∣∣
∫ t

0

m∑
l=n+1

eiκlξ1(τ)L(κl)
κ2
l

glsl(x) dτ

∣∣∣∣∣
2

dx,

где

gl =

∫
∂D

g(z)sl(z) dS(z) .

Нам понадобится легко проверяемая формула∣∣∣∣∫ t

0

ϕ(τ) dτ

∣∣∣∣2 = 2

∫ t

0

dτ1

∫ τ1

0

dτ2 Re
(
ϕ(τ1)ϕ(τ2)

)
для ϕ ∈ L1[0, t]. Используя её, получаем∫

D

E

∣∣∣∣∣
∫ t

0

m∑
l=n+1

eiκlξ1(τ)L(κl)
κ2
l

glsl(x) dτ

∣∣∣∣∣
2

dx = (4.6)

= 2E
∫ t

0

dτ1

∫ τ1

0

dτ2 Re

(
m∑

l=n+1

eiκl(ξ1(τ2)−ξ1(τ1))L
2(κl)
κ4
l

|gl|2
)

= (4.7)

= 2

∫ t

0

dτ1

∫ τ1

0

dτ2 Re

(
m∑

l=n+1

e−(τ2−τ1)L(κl) |L(κl)|2

κ4
l

|gl|2
)

= (4.8)

≤ Ct
m∑

l=n+1

|gl|2
|L(κl)|
κ4
l

(4.9)

В последнем неравенстве мы воспользовались тем, что ReL(κl) ≥ 0. Так как
|L(κl)| ≤ κ2

l , нам остаётся доказать, что стремится к нулю последовательность

m∑
l=n+1

|gl|2

κ2
l

.

Это в свою очередь следует из того, что D(
√
−∆N) = W 1

2 (D), а значит√
−∆NG ∈ L2(D).
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Действительно, по формуле Грина

gl =

∫
∂D

(γ1G)(z)sl(z) dS(z) =

∫
D

∇G · ∇sl dx =

=
(√
−∆NG,

√
−∆Nsl

)
= κl

(√
−∆NG, sl

)
,

и значит ∞∑
l=1

|gl|2

κ2
l

=
∞∑
l=1

∣∣∣(√−∆NG, sl

)∣∣∣2 <∞.
Покажем, что оператор Qt получается как усреднение операторов Qt по

траекториям ξ(·).

Теорема 4.5. Для любой функции g ∈ W 1/2
2 (∂D) справедливо

E(Qtg)(x) = (Qtg)(x).

Доказательство. Снова воспользуемся формулой (4.1), в которой следует за-
менить P τ на Pτ

E(Qtg)(x) = E
1

2
lim
M→∞

∫
∂D

∫ t

0

g(z)Pτ
M∑
l=0

L(κl)
κ2
l

sl(x)sl(z) dz dτ =

=
1

2
lim
M→∞

∫
∂D

∫ t

0

g(z)
∞∑
l=0

Eeiκlξ1(τ)L(κl)
κ2
l

sl(x)sl(z) dS(z) dτ =

=
1

2

∫
∂D

∫ t

0

R̃t(x, z)g(z) dS(z) dτ .

4.4 Симметричные устойчивые процессы
В настоящем параграфе мы укажем на то, какие исправления требуется внести
в изложенную выше схему, если рассматриваемый процесс Леви не обладает
вторым моментом. Мы сделаем это на примере симметричного α-устойчивого
процесса ξα(t) с α ∈ (1, 2) и значениями в Rd. Характеристическая функция
случайной величины ξα(t) равна

ϕα,t(p) = exp

(
−t|p|

α

α

)
.
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Генератор процесса ξα(t) – это оператор Lα = (−∆)α/2, где −∆ – оператор
Лапласа с ядром C∞c (Rd). Этот оператор действует на функцию f ∈ C2

0(Rd) по
правилу

−(−∆)α/2f(x) =
1

cα

∫
Rd

(
f(x + y)− f(x)− f ′(x) · y

) dy

y1+α
.

Сохраняя данные выше обозначения для двух продолжений f̃M и fM опре-
делим полугруппы P t

α и Rt
α, полагая

(P t
αf)(x) = Ef̃(x, ξα(t)) и (Rt

αf)(x) = Ef(x, ξα(t)).

При этом в качестве области определения оператора Rt
α всё так же можно вы-

брать W 2
2 (D). При таком определении однако нельзя взять в качестве области

определения оператора P t
α весь классW 2

2 (D) так как ввиду отсутствия второго
момента

Eχ(x + ξα(t)) =∞.
Определим P t

α на D(P t
α) = N 0 ⊕G2

2(D).
Генератор полугруппы P t

α – это оператор −Aα, заданный на области опре-
деления D(Aα) = N 0(D)⊕G2

2(D), и действующий по правилу

(Aαf)(x) = lim
M→∞

(Lαf̃M)(x, 0) при x ∈ D.

Генератор −AN
α полугруппы Rt

α – это оператор, действующий области опре-
деления D(−AN

α ) = N (D) по формуле

(AN
α f)(x) = lim

M→∞
(LαfM)(x, 0) при x ∈ D.

Аналогично доказанному в предыдущих параграфах доказывается

Лемма 4.3. Для f ∈ N 0(D)⊕G2
2(D) и x ∈ D справедливо соотношение

(P t
αf)(x)− (Rt

αf)(x) = − lim
M→∞

∫ t

0

P τ
αL
(
f̃M − fM

)
(x, 0) dτ .

Указанный предел существует также в смысле W 2
2 (D).

При этом в следующей лемме есть маленькое, но существенное отличие.

Лемма 4.4. Для f ∈ N 0(D)⊕G2
2(D) справедливо соотношение

(P t
αf)(x)− (Rt

αf)(x) =

∫
∂D

Qt
α(x, z)(γ1f)(z) dS(z),

где в качестве ядра Qt
α можно взять

Qt
α(x, z) = C +

1

α

∫ t

0

R̃t
α(x, z) dτ ,
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с любым вещественным C, а ядро R̃t
α определено формулой

R̃t
α(x, z) =

∞∑
l=1

1

κ2−α
l

e−tκ
α
l /αsm(x)sm(z).

Невозможность выбрать Qt
α однозначно означает, что средний накопленный

импульс определяется лишь с точностью до константы, и корректно определены
лишь разности накопленного импульса в разных точках.

Как в случае процесса Леви с конечным вторым моментом, определим опе-
раторное семейство (Qt

α)t≥0, полагая

(Qt
αg)(x) =

∫
∂D

Qt
α(x, z)g(z) dS(z)

для

g ∈ W 1/2,0
2 (∂D) =

{
g ∈ W 1/2,0

2 :

∫
∂D

g(z) dS(z) = 0

}
.

Из леммы выше следуют три следующие теоремы.

Теорема 4.6. Операторные семейства (Rt
α)t≥0 и (Qt

α)t≥0 удовлетворяют эво-
люционным соотношениям

Rt+s
α = Rt

αR
s
α,

Qt+s
α = Qt

α + R̃t
αQ

s
α.

При этом R0
α = I, Q0

α = 0.

Теорема 4.7. При всех t > 0 и f ∈ L2(D) справедливо соотношение

∂

∂t
Rt
αf =

1

α
AN
α R

t
αf.

Теорема 4.8. При всех t > 0 и g ∈ W 1/2,0
2 (D) справедливо соотношение

∂

∂t
Qtg =

1

α

∫
∂D

R̃t(x,y)g(y) dS(y) .

Посмотрим наконец как строится оператор случайного накопленного им-
пульса для процесса ξα. Определим случайный оператор Pτα = Pτα[ξα(·)], на
области определения N 0(D)⊕B2

2(D), полагая для f ∈ N 0(D)

(Pταf)(x) =
∞∑
m=1

eiκmξα,1(τ)(f, sm)sm(x),

и для f ∈ G2
2(D)

(Pταf)(x) = f(x + ξα(τ)).
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Очевидно, что P t
α = EP t. Определим случайный оператор Qt

α = Qt
α[ξα(·)], по

аналогии с формулой (4.5):

(Qt
αg)(x) = lim

M→∞

∫ t

0

PταL
(
G̃M −GM

)
(x, 0) dτ , (4.10)

где функция G = Gh ∈ W 2
2 (D) определена формулой (4.3).

Теорема 4.9. Предел в правой части (4.10) существует в смысле L2(H, µ),
где H = D × Ω и dµ = dx× dP.

Доказательство. Доказательство этой теоремы в точности повторяет доказа-
тельство теоремы 4.4. При этом вместо неравенства (4.9) получится∫

D

E

∣∣∣∣∣
∫ t

0

m∑
l=n+1

1

κ2−α
l

eiκlξα(τ)glsl(x) dτ

∣∣∣∣∣
2

dx ≤ C
m∑

l=n+1

|gl|2

κ4−α
l

.

Этот ряд сходится, так как при α ∈ (1, 2) верно неравенство 4− α > 2.

Справедлив также результат, аналогичный теореме 4.5 о том, что оператор
Qt является средним случайных операторов Qt.

Теорема 4.10. Для любой функции g ∈ W 1/2,0
2 (∂D) справедливо

E(Qtg)(x) = (Qtg)(x).

Доказательство аналогично.
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Заключение

В диссертации рассмотрены вопросы вероятностной аппроксимации решений
задачи Коши для уравнения Шрёдингера и начально-краевых задач для опе-
ратора Лапласа и операторов Леви в Rd. Изучение структуры полугрупп, от-
вечающих отражающимся версиям броуновского движения в d-мерном шаре и
симметричным процессам Леви с отражением в гладких ограниченных обла-
стях. Основные результаты работы:

1. Построена вероятностная аппроксимация решения задачи Коши для
уравнения Шрёдингера в Rd.

2. Построена вероятностная аппроксимация решения начально-краевых за-
дач Дирихле и Неймана для оператора eiφ∆, φ ∈ [0, π/4] в d-мерном шаре.

3. Получен операторный аналог разложения Скорохода для броуновского
движения с отражением в d-мерном шаре. Именно, доказано, что раз-
ность Qt полугруппы отражающегося процесса P t и полугруппы свобод-
ного процесса Rt является оператором, переводящим функции, заданные
на границе, в функции, заданные в области. Построен случайный опера-
тор Qt, обобщающий понятие интеграла по локальному времени. Доказа-
но равенство Qt = EQt.

4. Для последовательности сложных пуассоновских процессов, слабо схо-
дящейся к броуновскому движению, построены отражающиеся версии и
доказаны соответствующие предельные теоремы.

5. Получен операторный аналог разложения Скорохода для симметричных
процессов Леви, имеющих конечный второй момент, с отражением в глад-
ких ограниченных областях. Именно, доказано, что разность Qt полу-
группы отражающегося процесса P t и полугруппы свободного процесса
Rt является оператором, переводящим функции, заданные на границе, в
функции, заданные в области. Построен случайный оператор Qt, обоб-
щающий понятие интеграла по локальному времени. Доказано равенство
Qt = EQt.

6. Показано что для α-устойчивых процессов оператор Qt можно опреде-
лить лишь с точностью до произвольной константы. Построен случайный
оператор Qt и доказано равенство Qt = EQt.
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Приложение 1. Свойства собственных
функций оператора Лапласа–Дирихле и
Лапласа–Неймана

В этом приложении мы вводим обозначения, которые потребуются нам в пятой
и шестой главах работы. В обеих частях рассматриваются процессы в ограни-
ченных областях D ⊂ Rd с поглощением или отражением на границе. Так как
и поглощение, и отражение мы будем понимать в терминах граничных условий
для генератора, нам потребуются факты о собственных функциях оператора
Лапласа–Дирихле и Лапласа–Неймана.

4.5 Основные определения и обозначения
Пусть D – гладкая область в Rd (мы не делаем специальных оговорок, хотя
в большинстве случаев достаточно считать, что граница области C3-гладкая).
Для x ∈ Rd обозначим x = |x| и x̂ = x/x. Меру Лебега на границе области ∂D
будем обозначать через dS.

Запись A b B означает, что множество A компактно принадлежит B.

Сферические гармоники

Как известно, оператор Лапласа может быть записан в виде ([45], формула
(2.1))

∆ =
1

xd−1

∂

∂x
xd−1 ∂

∂x
+

1

x2
∆Sd−1, (4.11)

где ∆Sd−1 называется оператором Лапласа–Бельтрами на сфере Sd−1. Собствен-
ные значения оператора Лапласа–Бельтрами известны: λ(λ+d−2), λ ∈ Z+, при
этом каждое из них является кратным. Число вырождения d(λ) в общем случае
даётся формулой ([45], формула (2.46)). Фиксируем в каждом из собственных
подпространств ортонормированный в L2(S

d−1) базис {Y µ
λ }µ. Вся система соб-

ственных функций {Y µ
λ : µ = 1, . . . , d(λ), λ ∈ Z+} является ортогональным

базисом в L2(S
d−1). Справедливо соотношение ортогональности∫

Sd−1

Y µ
λ (x̂)Y µ′

λ′ (x̂) dx̂ = δλλ′δµµ′. (4.12)
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Функции Y µ
λ называются сферическими гармониками. Любая функция g из

L2(S
d−1) может быть разложена в ряд

g(x̂) =
∞∑
λ=0

d(λ)∑
µ=1

gλµY
µ
λ (x̂). (4.13)

В дальшейшей мы будем опускать указание на индексы суммирования в таких
суммах, предполагая, что значки λ и µ пробегают все свои возможные значения.

Сферические гармоники, отвечающие собственному значению λ(λ+ d− 2),
являются сужениями однородных порядка λ гармонических полиномов на сфе-
ру Sd−1. Следовательно, xλY µ

λ (x̂) – это гармонический полином.

4.6 Собственные функции оператора Лапласа с
условиями Дирихле или Неймана в
d-мерном шаре

Здесь и далее мы обозначаем

α = d/2− 1. (4.14)

Собственные функции оператора Лапласа с условиями Дирихле в d-мерном
шаре имеют вид

jdλ(κλkx)Y µ
λ (x̂), (4.15)

где jdλ – это d-мерные гиперсферические функции Бесселя, являющиеся реше-
ниями радиальной части уравнения Гельмгольца в Rd, и связанные с обычными
функциями Бесселя Jν соотношением ([45], формула (4.24))

jdλ(x) = Cα
Jλ+α(x)

xα
, Cα =

1 d ∈ 2Z,√
π

2
d /∈ 2Z;

, (4.16)

и κλk, k ≥ 0 – нули Jλ+α. Собственные значения оператора Лапласа с услови-
ями Дирихле, отвечающие этим собственным функциям, есть κ2

λk.
Введём дополнительно другую нумерацию для нормированных в простран-

стве L2(D) собственных функций, обозначая через sm m-ую функцию в списке
jdλ(κλkx)Y µ

λ (x̂)/nλµk (nλµk – нормировка собственных функций в L2), упоря-
доченном по возрастанию собственных чисел κ2

λk, а само соответствующее ей
собственное число κ2

λk обозначим через κ2
m. Это нужно для того, чтобы восполь-

зоваться асимптотикой Вейля ([46], стр. 205, формула (17.3.6)) для собственных
значений оператора Лапласа с условиями Дирихле:

κ2
m ∼

4π2

(ωd|Ω|)2
m2/d при m→∞, (4.17)
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где ωd – это объём единичного шара в Rd.

Лемма 4.5. Функция f0 класса W 2,0
2 (D) может быть разложена в ряд по

собственным функциям оператора Лапласа с условиями Дирихле:

f0(x) =
∑

c0
msm(x) =

∑
c0
λµkj

d
λ(κλkx)Y µ

λ (x̂), (4.18)

при этом её соболевская норма может быть оценена с двух сторон как

‖f0‖2
W 2

2 (D) �
∑
|c0
m|2m4/d (4.19)

Утверждение леммы следует из второго основного неравенства для эллип-
тического оператора ([40], гл. III, §8, стр.213).

Собственные функции оператора Лапласа с граничными условиями Нейма-
на в d-мерном шаре имеют вид

jdλ(κ̃λkx)Y µ
λ (x), (4.20)

где κ̃λk, k ≥ 0 – нули производной J ′λ+α(x).
Аналогично тому, как мы это делали для собственных функций оператора

Лапласа с граничными условиями Дирихле, введём вторую нумерацию для
этих собственных функций. А именно, обозначим через s̃m m-ую функцию в
списке jdλ(κ̃λkx)Y µ

λ (x̂)/ñλµk (ñλµk – нормировка собственных функций в L2),
упорядоченном по возрастанию собственных чисел κ̃2

λk, а само соответствующее
ей собственное число κ̃2

λk обозначим через κ̃2
m. При этом асимптотика Вейля не

изменися
κ̃2
m ∼ Cm2/d при m→∞, (4.21)

где

C =
4π2

(ωd|Ω|)2/d
,

где ωd – это объём единичного шара в Rd.
Справедлива аналогичная лемма:

Лемма 4.6. Пусть функция f0 класса W 2
2 (D) удовлетворяет условию

γ0∂nf0 = 0.

Тогда она может быть разложена в ряд по собственным функциям операто-
ра Лапласа с условиями Неймана:

f0(x) =
∑

c0
ms̃m(x) =

∑
c0
λµkj

d
λ(κ̃λkx)Y µ

λ (x̂), (4.22)

при этом её соболевская норма может быть оценена с двух сторон как

‖f0‖2
W 2

2 (D) � |c
0
0|2 +

∑
|c0
m|2m4/d (4.23)
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Нам потребуются выражения для интегралов вида
∞∫

0

xd−1jdλ(ux)R(x) dx, (4.24)

где u – неотрицательный параметр, а в качестве функции R может высту-
пать одна из следующих функций: xλ1[0,1](x), jdλ(vx) или jdλ(vx)1[0,1](x). Можно
показать, что для них справедливы соотношения, аналогичные соотношениям
теории обычных бесселевых функций. Эти интегралы вычислены в следующих
трёх леммах.

Лемма 4.7. Для любых u, v > 0 справедливо соотношение
∞∫

0

xd−1jdλ(ux) jdλ(vx) dx =
C2
α

ud−1
δ(u− v), (4.25)

где δ – это δ-функция Дирака.

Утверждение леммы следует из определения гиперсферических функций
Бесселя (4.16) и известного ([47], стр. 499, формула 3) соотношения для обыч-
ных функций Бесселя:

Лемма 4.8. Справедливо соотношение
1∫

0

xd−1jdλ(κλkx) jdλ(κλk′x) dx =
δkk′

2

(
jdλ+1(κλk)

)2

(4.26)

Утверждение леммы (4.8) вытекает из определения гиперсферических
функций Бесселя (4.16) и известного ([47], стр. 633, формула 4) соотношения
для обычных функций Бесселя.

Лемма 4.9. При u ≥ 0 справедливо соотношение
1∫

0

xd−1jdλ(ux)xλ dx =
jdλ+1(u)

u
(4.27)

Утверждение легко выводится из леммы 4.13 книги [48] (стр. 170).
Воспользуемся соотношением ортогональности (4.12) и леммой (4.8), чтобы

вычислить норму jdλ(κλkx)Y µ
λ (x̂) в L2(D).

n2
λµk = ‖jdλ(κλkx)Y µ

λ (x̂)‖2
L2(D) =

=

1∫
0

xd−1

(
jdλ(κλkx)

)2

dx

∫
Sd−1

|Y µ
λ (x̂)| dx̂ =

1

2

(
jλ+1(κλk)

)2

. (4.28)
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Аналогично можно вычислить норму функции jdλ(κ̃λkx)Y µ
λ (x̂). Для этого

нам понадобится формула ([47], стр. 634, формула 6)

ñ2
λµk = ‖jdλ(κ̃λkx)Y µ

λ (x̂)‖2
L2(D) =

=

1∫
0

xd−1

(
jdλ(κ̃λkx)

)2

dx =
C2
α

κ̃2
λk

1∫
0

x

(
Jλ+α(κ̃λkx)

)2

dx =

=
C2
α

κ̃2α
λk

(κ̃2
λk − (λ+ α)2)

2κ̃2
λk

J2
λ+α(κ̃λk) (4.29)

Окончательно,

ñ2
λµk =

κ̃2
λk − (λ+ α)2

2κ̃2
λk

(
jdλ(κ̃λk)

)2

(4.30)

Следующая лемма помогает при вычислении преобразований Фурье функ-
ций, данных в виде разложения по решениям уравнения Гельмгольца в шаре.

Лемма 4.10. Пусть функция имеет вид произведения f(x) = R(x)Y µ
λ (x̂).

Тогда её преобразование Фурье – это функция f̂(p) = S(p)Y µ
λ (p̂), где

S(p) = (−i)λ(d− 2)!!ωd−1

∞∫
0

xd−1 jdλ(px)R(x) dx. (4.31)

Доказательство использует известную формулу Релея для разложения плос-
кой волны ([45], (4.25))

eipx = (d− 2)!!ωd−1

∑
iλjdλ(px)Y µ

λ (x̂)Y µ
λ (p̂). (4.32)

Пользуясь этой леммой и леммой 4.7, получим, что преобразование Фурье
функции jdλ(κλkx)Y µ

λ (x̂) равно

(−i)λ(d− 2)!!ωd−1
C2
α

κd−1
λk

δ(p− κλk) Y µ
λ (p̂), (4.33)

то есть представляет собой заряд, сосредоточенный на сфере радиуса κλk. Сле-
довательно, справедливо представление

jdλ(κλkx)Y µ
λ (x̂) = (−i)λ (d− 2)!!ωd−1C

2
α

(2π)dκd−1
λk

∫
Sd−1κλk

Y µ
λ (p̂)e−ipx dp̂. (4.34)

Делая замену переменных в интеграле, получаем следующее утверждение:
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Лемма 4.11. Функция jdλ(κλkx)Y µ
λ (x̂) является аналитической функцией d

переменных и представляется в виде преобразования Фурье некоторого заряда
на сфере. Именно, справедлива формула

jdλ(κλkx)Y µ
λ (x̂) = (−i)λ (d− 2)!!ωd−1C

2
α

(2π)d

∫
Sd−1

Y µ
λ (p̂)e−iκλkp̂x dp̂. (4.35)

Для нас важно, что функция u(x) = jdλ(κx)Y µ
λ (x̂) принадлежит области

определения u ∈ D(L) (формула (0.4)), и является собственной функцией опе-
ратора L

− Lu = L(κ)u. (4.36)

4.7 Собственные функции оператора Лапласа в
ограниченной гладкой области с условиями
Неймана на границе

В этом параграфе мы переходим от шара к произвольной гладкой ограниченной
области D.

Для упорядоченной по возрастанию последовательности собственных чисел
κ2
m оператора Лапласа–Неймана в области D справедлива асимптотика Вейля

(см. [46], стр. 205, формула (17.3.6))

κ2
m ∼

4π2

(ωd|Ω|)2
m2/d при m→∞,

где ωd – это объём единичного шара в Rd.
Нормированную в L2(D) собственную функцию, отвечающую собственному

числу κ2
m будем обозначать через sm.

Обозначим через N (D) область определения оператора Лапласа с условия-
ми Неймана в W 2

2 (D)

N (D) =
{
u ∈ W 2

2 (D) : γ1u = 0
}

где γ1 : W 2
2 (D)→ W

1/2
2 (∂D) – это замкнутый с класса C∞c (Rd) оператор взятия

внешней нормальной производной на ∂D.
Известно, что для любой функции f ∈ W 1

2 (D) ряд

f =
∞∑
m=0

(f, sm)L2(D)sm (4.37)

сходится к f по норме W 1
2 (D). Если к тому же f ∈ N (D), то указанный ряд

сходится к f по норме W 2
2 (D). Заметим, что принадлежности f классу W 2

2 (D)
для такой сходимости недостаточно.
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Через h(x, z) обозначим функцию Грина оператора Лапласа с условиями
Неймана на ∂D, то есть решение уравнения

−∆zh(x, z) = δx − |D|−1,

выделенное условием нормировки∫
D

h(x, z) dx = 0.

Если функция g удовлетворяет условию разрешимости задачи Неймана (имеет
нулевой интеграл по границе), то

f(x) =

∫
∂D

h(x, z) g(z) dS(z)

удовлетворяет задаче Неймана −∆f = 0 в D и γ1f = g на границе.
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Приложение 2. Специальное разложение
W 2

2 (D) в ортогональную сумму
пространств

Определим квадратичную форму a равенством

a(u, v) =

∫
D

∆u ·∆v dx, D(a) = W 2
2 (D).

Нетрудно видеть, что a(u, u) = 0 тогда и только тогда, u ∈ G2
2(D) = {u ∈

W 2
2 (D) : u гармоническая}. Иначе говоря, a – настоящая норма вW 2

2 /G
2
2. Ввиду

того факта, что задача Неймана для оператора Лапласа однозначно разрешима
с точностью до константы, форма a оказывается невырожденной в классе

N 0 =

{
u ∈ N :

∫
D

u(x) dx = 0

}
.

Вычислим ортогональное по форме a дополнение к пространству N 0. Если
u a-ортогонально N 0, то есть выполнено∫

D

∆u ·∆v dx = 0 для всех v ∈ N ,

то это равенство в частности выполнено для всех v ∈ C∞c (D) ⊂ N 0, и значит

0 =

∫
D

∆u ·∆v dx =

∫
D

u ·∆2v dx .

Это означает, что ∆2u = 0 в смысле обобщённых функций. Согласно лемме
Вейля, u ∈ C4(D) и равенство ∆2u(x) = 0 выполнено поточечно в D.

Теперь для всех v ∈ N 0(D) выполнено

0 =

∫
D

∆u ·∆v dx =

=

∫
D

∆2u · v dx+

∫
∂D

(
v · ∂

∂n
∆u−∆u · ∂v

∂n

)
dS(x) =

= −
∫
∂D

v
∂

∂n
∆u dS(x) .
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Так как это равенство выполнено для всех v ∈ N 0(D), справедливо равен-
ство

γ1∆u = 0.

Так как замкнутость N 0(D) очевидна, доказана

Лемма 4.12. Имеет место ортогональное относительно формы a разложе-
ние

W 2
2 (D) = N 0(D)⊕BG2,0

2 (D),

где
BG2,0

2 (D) =
{
u ∈ W 2

2 (D) : ∆2u = 0, γ1∆u = 0
}
.

При этом форма a невырождена на N 0(D).

Построим теперь разложение для классаBG2,0
2 (D). Нетрудно убедиться, что

общее сферически-симметричное решение уравнения ∆2f = 0 имеет вид

f(x) =
A

xd−4
+

B

x2−d + Cx2 +D.

При этом первое и второе слагаемое не лежат в W 2
2 (D) (кроме того, первое

слагаемое не может удовлетворять условию γ1∆f = 0). Третье и четвёртое
слагаемое лежат в W 2

2 (D) и удовлетворяют условию γ1∆f = 0. Это наводит
нас на мысль, что из них можно “собрать” пространство BG2,0

2 (D).
Четвёртое слагаемое f(x) = D обнуляет форму a и лежит в пространстве

G2
2(D), и, следовательно, не представляет для нас интереса.
Рассмотрим решения уравнения ∆2f = 0, имеющие вид f = x2Y µ

λ (x̂). Тогда

∆f = 2dY µ
λ − λ

(
λ+ d− 2

)
Y µ
λ ,

и значит
λ
(
λ+ d− 2

)(
2d− λ

(
λ+ d− 2

))
Y µ
λ = 0.

Это возможно если λ = 2 или λ = 0. При λ = 2 функция xλY µ
λ лежит в классе

G2
2(D) и тоже обнуляет форму a. Так как сферические гармоники образуют

базис в L2(S
d−1), мы доказали, что подпространство в BG2,0

2 (D), на котором
отлична от нуля форма a, одномерно. Зафиксируем в нём a-нормированный
вектор χ

χ(x) =
x2√
2d|D|

и определим проекцию (по форме a) на одномерное подпространство в
BG2,0

2 (D), натянутое на χ, полагая для f ∈ W 2
2 (D)

fb(x) = a(f, χ) χ(x) = χ(x)

∫
D

∆f ·∆χdy .
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Нетрудно заметить, что справедливо равенство∫
∂D

∂fb
∂n

dS(x) =

∫
∂D

∂f

∂n
dS(x),

тем самым функция g = γ1(f − fb) удовлетворяет условию разрешимости за-
дачи Неймана γ1u = g для оператора Лапласа в D. Её решение, как известно,
определено с точностью до константы. Обозначим через fh такой выбор кон-
станты в решении, что fh − fb ∈ N 0(D).

Мы доказали, что имеет место ортогональное относительно формы a раз-
ложение

BG2,0
2 (D) = χC⊕G2

2(D),

где χC = {zχ : z ∈ C}.
Объединяя это равенство с доказанным ранее разложением для W 2

2 (D), мы
получаем следующую лемму.

Лемма 4.13. Имеет место ортогональное относительно формы a разложе-
ние

W 2
2 (D) = N 0(D)⊕ χC⊕G2

2(D).

При этом форма a невырождена в N 0(D) и χC, и тождественно равна нулю
в пространстве G2

2(D).

Заметим, что полученное разложение является прямым аналогом разложе-
ния пространства W 1

2 (D) (формула (0.5))

W 1
2 (D) = W 1,0

2 (D)⊕G1
2(D).

Кроме того, оно может быть обобщено на случай произвольного пространства
Соболева W k

2 (D), при этом на месте пространства N получаются классы с
условиями

γ1u = γ1∆u = · · · = γ1∆
lu = 0,

обеспечивающими хорошую сходимость рядов Фурье по собственным функци-
ям sm. Вместо χ при этом возникают полиномы чётных степеней от x.
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