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Extremes of Gaussian fields

Extreme value theory studies asymptotic behaviour of those rare events’
probabilities which involve paths escaping to co.

Typical extreme event is {3t € [0,7] : X (¢t) € A}, where A ranges over a family
of sets, move towards occ.

In this talk we shall focus on a very simple kind of sets A = { > ub}, where
u — 0o controls the escape to oo.
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However, we shall swap “ 3¢ 7 by a more general exceedance detector I' — a
functional, satisfying some assumptions.

We shall register a high exceedance event if the time spent in {x > ub} C R?,
measured by the functional I', exceeds a certain threshold L,. That is, we are
going to study

r.L, (u) = P{Tpm(@(X —ub)) > L.}

as u — oQ.

Here u is a specifically chosen blow-up factor, which rescales the process near
the exceedance event.
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Before discussing assumptions on I, let us look at some examples, allowed by
these assumptions.
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Parisian functional

First, we want to include the so-called Parisian functional or moving window
infimum
r X)=supinf min X;(t+ s).
xp(X) teE seFi=1...d it +s)

here’s how the corresponding exceedance event looks:

i

- -
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Sojourn functional

Another functional which will be admissible is the so-called sojourn functional

Pp(X) = /E G(X,) dt.

In fact, we can enlarge this class of functionals further by swapping 1 by an
arbitrary! function G.

! monotone in an appropriate sense
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Area under the curve

One particular instance of the G-sojourn functional is the area under the curve
functional

Tp(X)= [ min (Xi(t)), dt.
pi=1,..,d

6/16



Assumptions on I

The assumptions we put on I' are such that the asymptotic class of the
I'-exceedance

7/16



Assumptions on I

The assumptions we put on I' are such that the asymptotic class of the

["-exceedance is the same as in the “ 3¢ 7 exceedance:

Yr,L, (u) ~ CP{3t € [0,T] : X; > ub}.

7/16



Assumptions on I

The assumptions we put on I' are such that the asymptotic class of the
I'-exceedance is the same as in the “ 3¢ 7 exceedance:
Yr,L, (u) ~ CP{3t € [0,T] : X; > ub}.

Since the “ 3t ” exceedance may be rewritten as

{Hjo7)(a(X —ub)) >0}, where o7 (X)= sup min X;(t) >0,
te[0,T] i=1,...,d

7/16



Assumptions on I

The assumptions we put on I' are such that the asymptotic class of the
I-exceedance is the same as in the “ 3¢ ” exceedance:

Yr,L, (u) ~ CP{3t € [0,T] : X; > ub}.

Since the “ 3¢ 7 exceedance may be rewritten as

{Hjo ) (a(X —ub)) >0}, where o7 (X)= sup min X;(t) >0,

te[0,T] i=1,...,d

we obtain

YL, (u) ~ Como(u).

7/16



Assumptions on I

The assumptions we put on I' are such that the asymptotic class of the
I-exceedance is the same as in the “ 3¢ ” exceedance:

Yr 1, (u) ~ CP{3t €[0,T] : X; > ub}.

Since the “ 3¢ 7 exceedance may be rewritten as

{Hjo ) (a(X —ub)) >0}, where o7 (X)= sup min X;(t) >0,

te[0,T] i=1,...,d

we obtain
Yr L, (u) ~ Cebo(u).

this will be the guiding principle for our assumptions.
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Assumptions on I' for the Pickands lemma

The key assumption that we need is
I'X)>0 = 3te]0,7]: X; > 0. (F1)

The other two assumptions (F2) and (F3) are measurability /continuity
assumptions, hence may be considered technical.

Assuming now that X satisfies standard assumptions of the multivariate Gaussian

extreme value theory (see Debicki-Hashorva-Wang 2019), we can prove that the
Pickands lemma is valid in a form slightly different from the one outlined above.
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Assumptions on I' for the Pickands lemma

If, futhermore, I' satisfies

If Xr, K C{1,...,d} is a constant subvector of X, then

I'X)>0 <= I'(Xke,0g) >0 and Xpg > Og,

then the Pickands lemma holds ezactly as stated above:

P{L /o) (@(X — ub)) > Ly} ~ Hp(S) P{X (0) > ub}.

(F4)
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Assumptions on I' for the main theorem

The Pickands lemma is but a technical step, albeit most important, on the way
to the asymptotics ¢r r, (u).

To this end, we impose some global (in time) assumptions on a family of
functionals
{T'(A) : A C [0,T] compact}.
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Assumptions on I' for the main theorem

(B1l) I'y(X)>L = Ty p(X)>L
= I'y(X)>L and Jte B:X;>0.
(B2) Tupp(X) > L <= a*Tp(X(a-+b)) > L

(B3) Coincides with (F4).
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Under these conditions + usual conditions on a continuous stationary R?-valued
Gaussian process X, that is, under the assumption that its autocovariance
matrix function R satisfies
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we prove the following result:
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Main theorem for stationary processes

Theorem 1.

If X satisfies R1> and R2, T satisfies B1, B2, B3, F2 and F3 and L, = L - u e
then

Yr.n, () ~ THu*P{X(0) > ub}

with some complicated constant H € (0, 00).

2technical non-degeneracy assumption
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Main theorem for non-stationary processes

If X is a non-stationary continuous centered Gaussian process, we again use
standard assumptions on its covariance matrix function R(¢,s):

(D1) the inverse generalized variance function
t)=minz' R(t,t) 'z
g(t) = minz " R(t,1)
attains its unique minimum at t = 0
(D2) R(0,0) — R(t,s) ~ AtP + ATsP + V|t —s|¥ast,s >0int>s>0

(D3) technical regularity assumption on the paths.

Under these assumptions we prove the following theorem.
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Main theorem for non-stationary processes

Theorem 2.
Let X satisfy D1-D3, T satisfy B1, B2, B3, F2 and F3, then

Yr.p, (u) ~ Cu¥ =2+ P{X (0) > ub}

with some complicated constant C € (0, 00).
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