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Extremes of Gaussian fields

Extreme value theory studies asymptotic behaviour of those rare events’
probabilities which involve paths escaping to ∞.

Typical extreme event is {∃ t ∈ [0, T ] : X(t) ∈ A}, where A ranges over a family
of sets, move towards ∞.

In this talk we shall focus on a very simple kind of sets A = {x > ub}, where
u→ ∞ controls the escape to ∞.
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Functional Γ

However, we shall swap “ ∃ t ” by a more general exceedance detector Γ — a
functional, satisfying some assumptions.

We shall register a high exceedance event if the time spent in {x > ub} ⊂ Rd,
measured by the functional Γ, exceeds a certain threshold Lu. That is, we are
going to study

ψΓ,Lu(u) = P{Γ[0,T ](û(X − ub)) > Lu}

as u→ ∞.

Here û is a specifically chosen blow-up factor, which rescales the process near
the exceedance event.
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Here û is a specifically chosen blow-up factor, which rescales the process near
the exceedance event.

2 / 16



Functional Γ

However, we shall swap “ ∃ t ” by a more general exceedance detector Γ — a
functional, satisfying some assumptions.

We shall register a high exceedance event if the time spent in {x > ub} ⊂ Rd,
measured by the functional Γ, exceeds a certain threshold Lu. That is, we are
going to study

ψΓ,Lu(u) = P{Γ[0,T ](û(X − ub)) > Lu}
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Examples of Γ

Before discussing assumptions on Γ, let us look at some examples, allowed by
these assumptions.
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Parisian functional

First, we want to include the so-called Parisian functional or moving window
infimum

ΓE×F (X) = sup
t∈E

inf
s∈F

min
i=1,...,d

Xi(t+ s).

here’s how the corresponding exceedance event looks:
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Sojourn functional

Another functional which will be admissible is the so-called sojourn functional

ΓE(X) =

∫
E
dt.

In fact, we can enlarge this class of functionals further by swapping 1 by an
arbitrary1 function G.

1monotone in an appropriate sense
5 / 16
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Area under the curve

One particular instance of the G-sojourn functional is the area under the curve
functional

ΓE(X) =

∫
E

min
i=1,...,d

(Xi(t))+ dt.

6 / 16



Assumptions on Γ

The assumptions we put on Γ are such that the asymptotic class of the
Γ-exceedance is the same as in the “ ∃ t ” exceedance:

ψΓ,Lu(u) ∼ C P{∃ t ∈ [0, T ] : Xt > ub}.

Since the “ ∃ t ” exceedance may be rewritten as

{Π[0,T ](û(X − ub)) > 0}, where Π[0,T ](X) = sup
t∈[0,T ]

min
i=1,...,d

Xi(t) > 0,

we obtain
ψΓ,Lu(u) ∼ CψΠ,0(u).

this will be the guiding principle for our assumptions.
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Digression about Pickands lemma

A key tool of the Gaussian extreme value theory is the Pickands lemma. It
describes the exceedance event on an asymptotically shrinking interval. In
the “ {∃ t} ” case it says something like

P{} ∼ H(S) P{X(0) > ub}.

Here α ∈ (0, 2] is a parameter of the covariance of X.

The extension of this lemma to our “ Γ ” exceedance case is straightforward: just
swap “ ∃ t ” by Γ[0,T ].
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Assumptions on Γ for the Pickands lemma

The key assumption that we need is

Γ(X) > 0 =⇒ ∃ t ∈ [0, T ] : Xt > 0. (F1)

The other two assumptions (F2) and (F3) are measurability/continuity
assumptions, hence may be considered technical.

Assuming now that X satisfies standard assumptions of the multivariate Gaussian
extreme value theory (see Dȩbicki-Hashorva-Wang 2019), we can prove that the
Pickands lemma is valid in a form slightly different from the one outlined above.
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Assumptions on Γ for the Pickands lemma

If, futhermore, Γ satisfies

If XK , K ⊂ {1, . . . , d} is a constant subvector of X, then

Γ(X) > 0 ⇐⇒ Γ(XKc ,0K) > 0 and XK > 0K ,
(F4)

then the Pickands lemma holds exactly as stated above:

P{Γu−2/αS[k,k+1](û(X − ub)) > Lu} ∼ HΓ(S) P{X(0) > ub}.
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Assumptions on Γ for the main theorem

The Pickands lemma is but a technical step, albeit most important, on the way
to the asymptotics ψΓ,Lu(u).

To this end, we impose some global (in time) assumptions on a family of
functionals

{Γ(A) : A ⊂ [0, T ] compact}.
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Assumptions on Γ for the main theorem

(B1) ΓA(X) > L =⇒ ΓA∪B(X) > L

=⇒ ΓA(X) > L and ∃ t ∈ B : Xt > 0.

(B2) ΓaE+b(X) > L ⇐⇒ aλ ΓE(X(a · +b)) > L

(B3) Coincides with (F4).
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Main theorem for stationary processes

Under these conditions + usual conditions on a continuous stationary Rd-valued
Gaussian process X, that is, under the assumption that its autocovariance
matrix function R satisfies

R(0) −R(t) ∼ tα V as t ↓ 0, (R2)

we prove the following result:
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Main theorem for stationary processes

Theorem 1.
If X satisfies R12 and R2, Γ satisfies B1, B2, B3, F2 and F3 and Lu = L · u−2λ/α,
then

ψΓ,Lu(u) ∼ T H u2/α P{X(0) > ub}

with some complicated constant H ∈ (0,∞).

2technical non-degeneracy assumption
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Main theorem for non-stationary processes

If X is a non-stationary continuous centered Gaussian process, we again use
standard assumptions on its covariance matrix function R(t, s):

(D1) the inverse generalized variance function

g(t) = min
x≥b

x⊤R(t, t)−1x

attains its unique minimum at t = 0

(D2) R(0, 0) −R(t, s) ∼ Atβ +A⊤sβ + V |t− s|α as t, s→ 0 in t ≥ s ≥ 0

(D3) technical regularity assumption on the paths.

Under these assumptions we prove the following theorem.
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Main theorem for non-stationary processes

Theorem 2.
Let X satisfy D1-D3, Γ satisfy B1, B2, B3, F2 and F3, then

ψΓ,Lu(u) ∼ C u(2/α−2/β)+ P{X(0) > ub}

with some complicated constant C ∈ (0,∞).
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