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Leargning objectives

e Random and pseudo random samples.
e Non-parametric estimation.

e How to estimate dependence measures from data?
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Random sample

Definition 1 (Random sample).

A random sample is a collection
Dn={X1,...,Xn}

of n independent and identically distributed (i.i.d.) random vectors. We
abbreviate this as D ~ F', where F' is the common distribution function of the
vectors X;.

Random sample has to be distinguished from observations, which are the actual
values taken by the random vectors in the sample in a particular experiment:

.@n = {wl,...,xn}.

2/16



Properties and non-examples

Properties of random samples:
o If f:R? = R™ is a deterministic function and D,, = {X1,...,X,} is a
random sample, then f(D,,) = {f(X1),..., f(X,)} is a random sample.

e Joint distribution function of a random sample is the product of the marginal
distribution functions: Fp, (x1,...,@,) = [[;"; F(x;).

Non-examples:
e A time series {X;};cn where dependence between observations exists is not
a random sample.

e If we apply a random transformation to a random sample, the resulting
collection is not necessarily a random sample.

3/16



Empirical distribution function

Given a random sample D,, ~ F', we can estimate the joint distribution function F
by the empirical distribution function:

Bo(a) = % SOUX < x).
=1

Similarly, we can estimate the marginal distribution functions F by their empirical
counterparts:

. 1 <& .
Fj,n(l’)zﬁxl{X@ij}, j=1,...,d.
i=1

By the Glivenko-Cantelli theorem, the empirical distribution functions
converge uniformly (almost surely) to the true distribution functions: Fj,, — F.
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Monte-Carlo estimators

Empirical distribution functions are examples of Monte-Carlo estimators.

Assume that we have a random sample D,, ~ F' and we want to estimate the
quantity 6 which can be represented as an expectation:

9 =E{g(X)} with some function g : R? — R.

Then, the Monte-Carlo estimator of § is given by:
1 n
1=

. . . o . . 1
The key idea is to swap expectation by empitical average: E ~ = 3.
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Properties of Monte-Carlo estimators

e Monte-Carlo estimators are unbiased:

E {én} —0 for all n.

e Monte-Carlo estimators are strongly consistent by SLLN:
én %09 asn— oo.
e Monte-Carlo estimators are asymptotically normal by CLT:

Vn(0, —0) 4 N(0,0?) where o¢% = Varg(X).

e Some authors use the term Monte-Carlo method to refer to more
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Remarks about extensions of MC estimation method

Some authors use the term Monte-Carlo method to refer to more general
situations. For example,

,_ El9(x)}
E{h(X)}

Z?:l 9(Xi)
>y h(Xi)
Such “extended” Monte-Carlo estimators are often still consistent and
asymptotically normal', but they are biased in general.

can be estimated by 6, =

!By the Delta method
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Remarks about extensions of the MC estimation method

Note that the MC estimators as we defined them can be written as integrals with
respect to the empirical distribution function:

0 = /g(zc) A, (z) = %Zg(Xi).
=1

This motivates the following extension of the MC estimators:
if 9 = T'(F) for some functional 7" : {distribution functions} — R,
then we can estimate 6 by 6, = T'(F},).

The ratio estimator from the previous slide is an example of such an extension.
Such extended MC estimators are also not unbiased in general, but they are
often consistent and asymptotically normal.
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Remark about extensions of the MC estimation method

Throughout this course, “MC estimators” will always refer to the basic version
defined previously, i.e.

Note also what estimating = T'(F) by 6, = T(F},) can be thought of as plug-in
estimation: we replace the unknown distribution function F' by its empirical
counterpart Fi,.
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Mbotivation of pseudo random samples

To study the dependence structure of a random vector X, we often need to remove
the marinal information by applying the Smirnov/Rosenblatt transform:

X U = (Fi(X4),...,Fa(Xq)).

Given a random sample D,, = {X,..., X, }, we can apply the above transform to
each vector in the sample and the result will still be a random sample. However, in
practice the marginal distribution functions Fi, ..., Fy are unknown and have to
be estimated from the data. Replacing F} by its empirical counterpart Fj,n leads
to the notion of a pseudo random sample.
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Pseudo random sample

Definition 2 (Pseudo random sample).

A pseudo random sample U, is a collection of vectors obtained by applying
the empirical distribution functions FLn, .. Fdn to the components of the
vectors in a random sample D,, = { X7, ... ,X }

Uy = {(FLn(Xi,l), . .,de(Xi,d)) i=1,... ,n} )

Important remarks:
e Note that U, is not a random sample since the vectors in U,, are dependent
though the empirical distribution functions.
e Since Fj,, ~ Fj for large n, we expect that an( ;) ~ Unif(0,1).

e We also expect that (Fl,n(Xl), e 7Fd,n(Xd)) L CF, where CF is the copula of
F.
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Remarks about pseudo-random samples

Assume for simplicity that d = 2 and consider the pseudo random sample
Dn == {(Xl, }/1), ey (Xn, Yn)} Let Unl = Fl,n(Xz) and Vnﬂ' = ngn(Y;) be the
components of the vectors in the pseudo random sample.

Important remarks:
° (Um, Vm) are identically distributed.
) Am- and Vn,i are not independent.

° Am- and Vn,i are not uniformly distributed on (0, 1), but they almost are:
they have the discrete distribution with mass 1/n at points 1/n, 2/n, ..., 1.

e Since they are not independent, standard i.i.d. asymptotic results like CLT,
WLLN and SLLN cannot be applied without further justification.
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Estimation of Kendall’s 7

Recall that Kendall’s 7 was defined as
T = P{AxAy > 0} — P{AxAy < 0}.

Let us use this formula to build a Monte Carlo estimator of 7 from a random
sample D,,. Consider all possible pairs of observations (X;,Y;) and (X}, Y;) with
i # j. We say that the pair is concordant if (X; — X;)(Y; —Y;) > 0 and
discordant otherwise. Then, estimating P {...} by empirical probabilities we
obtain

number of concordant pairs — number of discordant pairs

(5)

Tn =
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Estimation of Kendall’s 7

Recall that Kendall’s 7 was defined as
T=P {Z&){ZX}/ > 0}-—— P {ZX;(ZX)/ < 0}.

Let us use this formula to build a Monte Carlo estimator of 7 from a random
sample D,,. Consider all possible pairs of observations (X;,Y;) and (X}, Y;) with
i # j. We say that the pair is concordant if (X; — X;)(Y; —Y;) > 0 and
discordant otherwise. Then, estimating P {...} by empirical probabilities we

obtain
. _ nc—np . 4np
" nn—1)/2 n(n —1)
4
- L{(X; - X;)(¥; - Y;) < 0}
n(n—1) 1S;§n J J
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Estimation of pg

Recall that one of the equivalent formulas for Spearman’s pg was
ps = 12E{UV} —3, where (U, V)~ Cp.

Let us use this formula to build a Monte Carlo estimator of pg from a random
sample D,,. Using the pseudo random sample U,,, we can estimate E{UV} by the
empirical average:

A I n o
psn =12~ 2 Un.iVni — 3.
1=
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Estimation of A\

Recall that one of the equivalent formulas for the upper tail dependence coefficient

A\ was PV U
A= lim PV > U > )

ufl 1—u

,  where (U, V) ~ C.

Let us use this formula to build a Monte Carlo estimator of A from a random
sample D,. Swapping the limit by just high quantile level and replacing U and V'
by their pseudo random sample counterparts, we obtain

~ 1 n R .
)\n o1 —u) n,i sy Vna
(w) n(l—u);l{U’>u Vi > u}
1 n

i=1
The choice of u is a hard problem in practice!
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Questions/exercises

e [s it okay to use MC estimators on pseudo random samples?
e How to construct a confidence interval for F'?
e Describe the MC estimator of P {(X,Y) € A} if A C R? in simple words.
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