Lecture 11. Parametric statistics of dependent
risks

Enkelejd Hashorva & Pavel Ievlev

Université de Lausanne

1 December, 2025

0/12



Leargning objectives

e Statistical models: parametric, semi-parametric, separable, non-separable.
e Maximum likelihood estimation (MLE) and pseudo-MLE (PMLE).

e Hypothesis testing for choosing a copula.
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Statistical models

Definition 1 (Statistical model).

A statistical model is a family of distributions F = {F'} used to
approximate the mechanism generating the data 2,.

In other words, a statistical model is a set of hypotheses of the form
“the data &, are generated from a distribution F' € F.”

A model is called parametric if the family F = {Fp : 8 € © C R?} is indexed
by a finite-dimensional parameter 6.

Definition 2 (Statistical estimation).

Statistical estimation aims to find the “best” F' € F fitting the data &,. The
model does not claim that the true distribution of the data belongs to F, but
rather that F can generate data “sufficiently similar” to Z,.
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Parametric and semi-parametric models with pdf

Assume that all dfs F' of a given statistical model F have a pdf f. Then, both
marginals and copula have pdfs given by

d
f@) = c(Fi(z1), ..., Fa(zq)) [] filxs).
i=1
We can classify such models as follows:

e Parametric vs semi-parametric models: if both marginals and copula are
parametric, then the model is called fully parametric; if at least one of them
is non-parametric, then the model is called semi-parametric.

e Separable vs non-separable models: if the marginals and the copula can
be estimated separately, then the model is called separable; otherwise, it is
called non-separable.
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Separable models

A fully parametric and separable model with pdf is of the form

f91,92,93 ($, y) = fl,@l (iL‘) f2,02 (y) Co; (F1,01 (I’), FZ,GQ (y))v 91 € @z

Note that the parameters of the marginals 81,82 and the copula 8¢ are distinct.

A semi-parametric and separable model with pdf is of the form

f(z,y) = fi(z) f2(y) co (F1 (x),Fz(y)), 0 € ©, F; non-parametric.

One important example is when we assume a semi-parametric separable model
with F; estimated by the empirical dfs.
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Maximum likelihood estimation

A universal method for estimating parameters of parametric models with pdfs is
the maximum likelihood estimation (MLE). Given a random sample D,, ~ Fyp,
we define the likelihood function as

=1

The maximum likelihood estimator 8, is defined (if it is finite!) as

6,, = argmaxgco L(0;Dy,).

It is often more convenient to work with the log-likelihood function

((0;D,) = In L(0; D,) Zlnfg
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MLE example: multivariate normal

If D, ~ N(p,%) and ¥ is invertible, then

n

nd n 1 _
U, D) = = In(2m) — 5 I [¥] - 5 D (X — ) STHXG - ).
im1

To maximize ¢ with respect to u and X to zero, we set the gradients to zero and
solve:

Vul =37 (X —p) =0,
=1

n

Vnl= -3+ ;E_l<;(Xi — (X -7z =0,
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MLE example: multivariate normal

Solving the system of equations, we obtain the MLEs

n

. 1 & ~ 1 . .
fin = ElXi, and X, = - El(Xi—/Ln)(Xi—Hn)Ta
1= 1=

which are the sample mean vector and the sample covariance matrix, respectively.
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Pseudo-MLE

Assuming a semi-parametric and separable model, it makes sense to consider
the so-called dependence log-likelihood function

Caep(0; Dy) Zlnce (Fi(Xi1), - Fa(Xia)),

Estimating the marginals F; non-parametrically by the empirical dfs Fi,n, we
obtain the pseudo log-likelihood function

Edep (6;D,) Zlnce Fin(Xi), -y Fan(Xia))-

The pseudo maximum likelihood estimator 6, is defined (if is it finite!) as

0, = argmaxgco Zdep(O; D).
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PMLE for Archimedean copulas

To formulate PMLE for an Archimedean copula model Cy, we need to
e assume that ¢ comes from some parametric family of generators {g}

e and find its pdf cy.

The formula for the pdf looks easier if we introduce ¢ = 1)~!. We have:

PR ACORLTO
ST W (g (w) ¢ ($(v))
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Mixture copula models

Another popular class of parametric copula models is the class of mixture
copulas. Recall that mixture copula is defined as

k k

Cw(u,v) = ZwiC(u,v), we[0,1)F: Zwi =1.

i=1 i=1

To estimate the weights w, we can use PMLE, but it is often easier and more
efficient to calculate their moments or their dependence measures such as
Kendall’s 7 or Spearman’s pg, and match them against their empirical estimates.
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Hypothesis testing for choosing a copula

Choosing an adequate copula model C (family of copulas) may be formulated as a
hypothesis testing problem:

Hy:CeC vs Hy:C¢4C,

One popular idea is to compare the best copula Cén in C to the empirical

copula
n

~ 1 ~ N
Cu(u,v) = > Ui <u,Uip < v}

i=1

using the Cramér—von Mises (CVM) statistic defined as
N N N2
Sp = Z (Cn<U117 Uz2) - Cé (Uz‘l, U12)> .
=1

Large values of S, lead to the rejection of Hy.
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Questions/exercises

What’s the meaning of likelihood function?
e Why does MLE work only for models with pdfs?
Why do we require D,, to be a random sample in the MLE method?

e Can we apply PMLE to non-separable models?

Why did we assume that X is invertible in the MLE example for multivariate
normal?
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