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Leargning objectives

• Statistical models: parametric, semi-parametric, separable, non-separable.

• Maximum likelihood estimation (MLE) and pseudo-MLE (PMLE).

• Hypothesis testing for choosing a copula.
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Statistical models

Definition 1 (Statistical model).

A statistical model is a family of distributions F = {F} used to
approximate the mechanism generating the data Dn.

In other words, a statistical model is a set of hypotheses of the form

“the data Dn are generated from a distribution F ∈ F .”

A model is called parametric if the family F = {Fθ : θ ∈ Θ ⊂ Rd} is indexed
by a finite-dimensional parameter θ.

Definition 2 (Statistical estimation).

Statistical estimation aims to find the “best” F ∈ F fitting the data Dn. The
model does not claim that the true distribution of the data belongs to F , but
rather that F can generate data “sufficiently similar” to Dn.
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Parametric and semi-parametric models with pdf

Assume that all dfs F of a given statistical model F have a pdf f . Then, both
marginals and copula have pdfs given by

f(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi).

We can classify such models as follows:

• Parametric vs semi-parametric models: if both marginals and copula are
parametric, then the model is called fully parametric; if at least one of them
is non-parametric, then the model is called semi-parametric.

• Separable vs non-separable models: if the marginals and the copula can
be estimated separately, then the model is called separable; otherwise, it is
called non-separable.
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Separable models

A fully parametric and separable model with pdf is of the form

fθ1,θ2,θ3(x, y) = f1,θ1(x) f2,θ2(y) cθ3
(
F1,θ1(x), F2,θ2(y)

)
, θi ∈ Θi.

Note that the parameters of the marginals θ1,θ2 and the copula θC are distinct.

A semi-parametric and separable model with pdf is of the form

f(x, y) = f1(x) f2(y) cθ
(
F1(x), F2(y)

)
, θ ∈ Θ, Fi non-parametric.

One important example is when we assume a semi-parametric separable model
with Fi estimated by the empirical dfs.
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Maximum likelihood estimation
A universal method for estimating parameters of parametric models with pdfs is
the maximum likelihood estimation (MLE). Given a random sample Dn ∼ Fθ,
we define the likelihood function as

L(θ;Dn) =

n∏
i=1

fθ(Xi).

The maximum likelihood estimator θ̂n is defined (if it is finite!) as

θ̂n = argmaxθ∈Θ L(θ;Dn).

It is often more convenient to work with the log-likelihood function

ℓ(θ;Dn) = lnL(θ;Dn) =

n∑
i=1

ln fθ(Xi).
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MLE example: multivariate normal

If Dn ∼ N(µ,Σ) and Σ is invertible, then

ℓ(µ,Σ;Dn) = −nd
2

ln(2π)− n

2
ln |Σ| − 1

2

n∑
i=1

(Xi − µ)⊤Σ−1(Xi − µ).

To maximize ℓ with respect to µ and Σ to zero, we set the gradients to zero and
solve:

∇µℓ = Σ−1
n∑
i=1

(Xi − µ) = 0,

∇Σℓ = −n
2
Σ−1 +

1

2
Σ−1

( n∑
i=1

(Xi − µ)(Xi − µ)⊤
)
Σ−1 = 0.
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MLE example: multivariate normal

Solving the system of equations, we obtain the MLEs

µ̂n =
1

n

n∑
i=1

Xi, and Σ̂n =
1

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)
⊤,

which are the sample mean vector and the sample covariance matrix, respectively.
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Pseudo-MLE
Assuming a semi-parametric and separable model, it makes sense to consider
the so-called dependence log-likelihood function

ℓdep(θ;Dn) =

n∑
i=1

ln cθ
(
F1(Xi1), . . . , Fd(Xid)

)
,

Estimating the marginals Fi non-parametrically by the empirical dfs F̂i,n, we
obtain the pseudo log-likelihood function

ℓ̂dep(θ;Dn) =

n∑
i=1

ln cθ
(
F̂1,n(Xi1), . . . , F̂d,n(Xid)

)
.

The pseudo maximum likelihood estimator θ̂n is defined (if is it finite!) as

θ̂n = argmaxθ∈Θ ℓ̂dep(θ;Dn).
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PMLE for Archimedean copulas

To formulate PMLE for an Archimedean copula model Cψ, we need to

• assume that ψ comes from some parametric family of generators {ψθ}
• and find its pdf cψ.

The formula for the pdf looks easier if we introduce ϕ := ψ−1. We have:

cψ(u, v) =
ϕ′′(ψ(u) + ψ(v))

ϕ′(ψ(u))ϕ′(ψ(v))
.
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Mixture copula models

Another popular class of parametric copula models is the class of mixture
copulas. Recall that mixture copula is defined as

Cw(u, v) =

k∑
i=1

wiC(u, v), w ∈ [0, 1]k :

k∑
i=1

wi = 1.

To estimate the weights w, we can use PMLE, but it is often easier and more
efficient to calculate their moments or their dependence measures such as
Kendall’s τ or Spearman’s ρS , and match them against their empirical estimates.
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Hypothesis testing for choosing a copula

Choosing an adequate copula model C (family of copulas) may be formulated as a
hypothesis testing problem:

H0 : C ∈ C vs H1 : C /∈ C,

One popular idea is to compare the best copula Cθ̂n in C to the empirical
copula

Ĉn(u, v) =
1

n

n∑
i=1

1{Ûi1 ≤ u, Ûi2 ≤ v}

using the Cramér–von Mises (CVM) statistic defined as

Sn =

n∑
i=1

(
Ĉn(Ûi1, Ûi2)− Cθ̂n(Ûi1, Ûi2)

)2
.

Large values of Sn lead to the rejection of H0.
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Questions/exercises

• What’s the meaning of likelihood function?

• Why does MLE work only for models with pdfs?

• Why do we require Dn to be a random sample in the MLE method?

• Can we apply PMLE to non-separable models?

• Why did we assume that Σ is invertible in the MLE example for multivariate
normal?
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