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Learning objectives

• Derive the copula C of random maxima (XN :N , YN :N )

• Sample data from C given N and the df G of (X1, Y1)

• Focus on three tractable instances for N and calculate by simulation measures
of dependence for C

• Use pseudo-ML to fit Cα to concrete insurance data
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Random maximum claims

Let (Xi, Yi)’s be iid with df G. Define the random maximum

(MN ,M⋆
N ) =

(
max
1≤i≤N

Xi, max
1≤i≤N

Yi

)
where the integer-valued rv N ≥ 1 is independent of (Xi, Yi)’s.

The df F of (MN ,M⋆
N ) is a mixture df, i.e.,

F (x, y) =

∞∑
n=1

P {N = n}Gn(x, y) = E
{
eN lnG(x,y)

}
= L(− lnG(x, y)),

with L the Laplace transform of N .
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Marginal df’s

The marginal df’s of F are given from the marginals G1, G2 of G by

F1(x) = L(− lnG1(x)), F2(x) = L(− lnG2(x)), x ∈ R

If G has continuous marginal df’s, then Fi’s are continuous implying that the
copula Q of G is unique and given by

C(u1, u2) = L (− lnQ(v1, v2)) , vi = e−L−1(ui), u1, u2 ∈ [0, 1]
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Simulation from C ∼ (U1, U2) & known LT L

• S1: Simulate n from N with Laplace transform L

• S2: Generate a RS (Vi1, Vi2), 1 ≤ i ≤ n from copula Q

• S3: Calculate the component-wise maximum (M̃1, M̃2) by

M̃j = max
1≤i≤n

Vij , j = 1, 2

• S4: Return (U1, U2) with the representation

Uj = L(− ln M̃j), j = 1, 2
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Model A: N is shifted Geometric

Suppose that for θ ∈ (0, 1)

P {N = n} = (1− θ)n−1θ, for n = 1, 2, . . .

with LT L(t) = θe−t/[1− (1− θ)e−t] and hence

F (x, y) =
θG(x, y)

1− (1− θ)G(x, y)
, x, y ∈ R

and

C(u1, u2) =
θQ(v1, v2)

1− (1− θ)Q(v1, v2)
, vj =

uj
θ + (1− θ)uj

, j = 1, 2

where vj = F−1
j (uj) is obtained by inverting the marginal df.1

1The transformation vj differs for each model because it comes from inverting
Fj(x) = L(− lnGj(x)).
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Model B: N is shifted Poisson

Let N = 1 + T with T a Poisson rv with mean θ > 0 and LT

L(t) = E
{
e−t−tT

}
= e−tE

{
e−tT

}
= e−te−θ(1−e−t)

implying
F (x, y) = G(x, y)e−θ(1−G(x,y)), x, y ∈ R

and
C(u1, u2) = Q(v1, v2)e

−θ(1−Q(v1,v2)), u1, u2 ∈ [0, 1]

where vj = uje
θ(uj−1), j = 1, 2.
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Model C: N = (T |T > 0) is truncated Poisson
Suppose that the rv T is Poisson with parameter θ > 0, hence

P {N = k} =
e−θθk

k!(1− e−θ)
, k ≥ 1.

Its LT is given by

L(t) =

∞∑
k=1

P {N = k} e−kt =
a

1− a

[
eθe

−t − 1
]
, a = e−θ

and hence
F (x, y) =

a

1− a

[
eθG(x,y) − 1

]
, x, y ∈ R

C(u1, u2) =
a

1− a

[
eθQ(v1,v2) − 1

]
, u1, u2 ∈ [0, 1]

with vj =
1
θ ln (1 + uj(1− a)/a), j = 1, 2.
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Simulation from Models A, B and C

Using the simulation algorithm, we can simulate copulas from Models A, B and C
for N .

• Q belongs to the Gumbel or Clayton family with parameter α = 10

• N follows the shifted Poisson df

• S1–S4 of simulation algorithm are repeated 10’000 times

• Computed empirical Kendall’s τ for both C and Q for different values of
E {N} is given in the following table
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Simulation results

Q: Gumbel copula with α = 10 Q: Clayton copula with α = 10
E {N} τ(C) τ(Q) τ(C) τ(Q)

10 0.9059 0.9022 0.3533 0.8343
100 0.8980 0.9002 0.0518 0.8348
1’000 0.9007 0.9004 0.0043 0.8334
10’000 0.9016 0.9018 0.0019 0.8324
100’000 0.8997 0.8996 -0.0104 0.8316
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Interpretation of simulations

• For Q the Gumbel copula, the level of dependence governed by C is
approximately equal to that of Q, even when E {N} increases.

• If Q is the Clayton copula, the bigger E {N} the weaker the dependence
associated with C.

• The results indicate (and this turns out to be true) that, if λ(CU ) = 0, i.e.,
Clayton copula, when E {N} increases, C → CI since τ(C) ≃ 0.

• If Q is an EVC, i.e., Gumbel copula in our case, the dependence is
preserved because EVCs have positive upper tail dependence λ(CU ) > 0.
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Using C for modelling insurance data

Suppose that Q = Qα depends on an unknown parameter α > 0. Then the copula
C for Model A, B, C is parametrised by α and θ, where θ is the parameter of the
df of N .

Estimation of α and θ can be done using the pseudo-likelihood approach.

11 / 20



Loss-ALAE from medical insurance
SOA Medical Group Insurance data sets describing the medical claims observed
over the years 1991–1992.

Loss ALAEa

Min 25’003 5
Q1 30’859 7’775
Q2 40’985 14’111
Q3 64’067 23’547
Max 1’404’432 409’586

No. Obs. 5’106 5’106
Mean 62’589 20’001
Std. Dev. 69’539 24’130

aAllocated loss adjustment expenses ≈ paid
expenses to a given loss

Dependence measures Values

Pearson’s Correlation 0.44
Spearman’s Rho 0.44
Kendall’s Tau 0.30
Upper tail dependence 0.38
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Loss-ALAE from medical insurance: Fitting

• Q is either Gumbel, Frank, Student or Joe copula

• Criteria for the goodness of fit:

• AIC criteria: AIC = −2l(Θ̂) + 2p, where p corresponds to the number of
parameters to estimate

• Cramér–von Mises statistic: computation of the p-values based on a
bootstrap procedure

• Root Mean Square Error
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Loss-ALAE data set: Results

Original copula Q Distribution for N P-value RMSE AIC

Gumbel None 0.755 0.0039 -1,371.21
Geometric 0.740 0.0039 -1,369.28
Truncated Poisson 0.745 0.0039 -1,369.27
Shifted Poisson 0.527 0.0047 -1,328.14

Frank None 0.021 0.0096 -1,137.12
Geometric 0.026 0.0096 -1,135.09
Truncated Poisson 0.021 0.0096 -1,135.10
Shifted Poisson 0.017 0.0096 -1,135.12

Student None 0.046 0.0090 -1,195.83
Geometric 0.063 0.0090 -1,193.82
Truncated Poisson 0.024 0.0090 -1,193.82
Shifted Poisson 0.045 0.0090 -1,193.82

Joe None 0.055 0.0039 -1,371.21
Geometric 0.986 0.0027 -1,393.23
Truncated Poisson 0.919 0.0032 -1,386.87
Shifted Poisson 0.892 0.0034 -1,384.34
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Loss-ALAE from general liability insurance

This data set describes the general liability claims associated with their ALAE
retrieved from the Insurance Services Office available in the R package.

It consists of 1’466 uncensored data points and 34 censored observations.

Let Xi be the i-th loss observed and Yi the ALAE associated to the settlement of
Xi.

Each loss is associated with a maximum insured claim amount (policy limit) M .
Thus, the loss variable Xi is censored when it exceeds the policy limit M . We
define the censored indicator of the loss variable by

δi =

{
1 if Xi ≤ M,

0 if Xi > M,
i = 1, . . . , 1′500
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Loss-ALAE from general liability insurance (contd.)

Due to censoring, a modified estimator (Kaplan–Meier estimator) ĜX is used
to estimate G1. The corresponding pseudo log-likelihood function is also adapted
accordingly.

The analysis is more technical, but similar to the first application, see R
code.
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Danish fire insurance data

This dataset consists of three components.

We shall model the dependence between the loss amount on the building and the
loss amount for the content inside the building.

The total number of observations is 1’501.

We shall consider only observations where both components are positive.

The analysis is similar to the first application, see R code.
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Loss-ALAE from accident insurance

• We consider an insurance data from a large insurance company operating in
Switzerland

• The dataset consists of 33’258 accident insurance losses and their
corresponding allocated loss adjustment expenses (ALAE) which include
the cost of medical consultancy and legal fees

• The observation period encompasses the claims occurring during 1986–2014
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Loss-ALAE from accident insurance: Summary

Loss ALAE

Min 10 1
Q1 13’637 263
Q2 32’477 563
Q3 95’880 1’509
Max 133’578’900 2’733’282

No. Obs. 33’258 33’258
Mean 292’715 5’990
Std. Dev. 2’188’622 42’186

Dependence measures Values

Pearson’s Correlation 0.74
Spearman’s Rho 0.74
Kendall’s Tau 0.60
Upper tail dependence 0.68
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