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Learning objectives

• Understand why risk aggregation matters for capital requirements

• Compute aggregated risk for Gaussian and elliptical distributions

• Apply VaR and TVaR additivity for comonotonic risks

• Use comonotonic bounds when the dependence structure is unknown
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Roadmap

1. The aggregation problem — why computing the distribution of
S = X1 + · · ·+Xk is difficult

2. Tractable case I: Gaussian & elliptical risks — closed-form aggregation
via variance

3. Tractable case II: Comonotonic risks — VaR and TVaR additivity

4. Bounds for unknown dependence — comonotonic upper bounds
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Why do we aggregate risks?

Regulatory requirements: Solvency II, Basel III/IV require insurers and banks
to hold capital against total portfolio risk, not individual risks.

Practical question: Given k business lines with risks X1, . . . , Xk, what is the
capital requirement for the entire company?

Required capital = ρ(X1 + · · ·+Xk) = ρ(S)

The challenge: We often know ρ(Xi) for each line, but

ρ(S) ̸= ρ(X1) + · · ·+ ρ(Xk) in general!

Diversification benefit: Usually ρ(S) <
∑

i ρ(Xi) — but by how much?

Remark: The inverse problem (disaggregation) — breaking down top-level
results to the portfolio level — is also important in practice.
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Part 1: The Aggregation Problem
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Why is risk aggregation challenging?

If X1, . . . , Xk are independent, then S =
∑

i≤k Xi is a convolution

FS = FX1 ∗ · · · ∗ FXk
.

But even then, closed-form expressions for the convolution are rarely available!

If the copula C of (X1, . . . , Xk) is not the independence copula CI , then S is
determined from both the marginal df’s and the copula C.

Typically, C is unknown — so what can we do?

Three approaches:

1. Assume a specific copula → Monte Carlo simulation

2. Assume a tractable distribution family (Gaussian, elliptical)

3. Derive bounds that hold for any dependence structure
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Simulation approach: Aggregation of log-normal risks

In actuarial practice, risk aggregation is performed using Monte Carlo
simulations.

If X = (X1, . . . , Xk)
⊤ ∼ N(0,Σ), then

Y
d
= exp(X) ∼ LN(0,Σ)

is a log-normal random vector.

Log-normal risks are important for both insurance and finance applications.

Using simulations, it is possible to calculate the df of

a1Y1 + · · ·+ akYk

for constants ai, i ≤ k.
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Part 2: Gaussian & Elliptical Risks
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Why Gaussian risks are tractable

Key property: Linear combinations of jointly Gaussian random variables are
Gaussian.

If X = (X1, . . . , Xk) ∼ N(µ,Σ), then for any constants a1, . . . , ak:

S = a1X1 + · · ·+ akXk ∼ N

∑
i

aiµi,
∑
i,j

aiajσij


Consequence: Risk measures like VaR and TVaR can be computed in closed
form!

This extends to elliptically symmetric distributions (e.g., Student-t).
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Aggregation of Gaussian risks

Let X = (X1, . . . , Xk) ∼ N(0,Σ) with Σ ∈ Rk×k a covariance matrix.

For constants ai, i ≤ k, we have

a1X1 + · · ·+ akXk
d
= bV

with V ∼ N(0, 1).

Since bV ∼ N(0, b2), the constant b is found by

b2 = Var{a1X1 + · · ·+ akXk} =
∑

1≤i,j≤k

aiajσij

Example (k = 2): b2 = a21σ11 + a22σ22 + 2a1a2σ12
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Aggregation of randomly scaled risks

If X = (X1, . . . , Xk)
⊤ ∼ N(0,Σ) as above, then for the common shock model

Y = WX

with W > 0 independent of X, we have for constants ai, i ≤ k:

a1Y1 + · · ·+ akYk
d
= W (a1X1 + · · ·+ akXk)

d
= WbV, V ∼ N(0, 1)

A particular instance is the Student (or t) distribution.
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Radial representation of Gaussian vectors

Given a k × k real matrix A such that AA⊤ = Σ, then

X
d
= AZ

with Z having independent N(0, 1) components.

Important fact: the radius is independent of the angles, i.e.,

R =
√

Z2
1 + · · ·+ Z2

k is independent of U :=

(
Z1

R
, . . . ,

Zk

R

)
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Aggregation of spherically symmetric risks
Recall that if U = (U1, . . . , Uk) is uniformly distributed on the unit sphere

Sk−1 =

{
x ∈ Rk :

k∑
i=1

x2i = 1

}

then

U
d
=

(
Z1

R
, . . . ,

Zk

R

)
, R =

√
Z2
1 + · · ·+ Z2

k

and Z1, . . . , Zk are iid N(0, 1) rv’s independent of R.

If ai, i ≤ k are real constants, then

a1U1 + · · ·+ akUk
d
= U1

√√√√ k∑
i=1

a2i
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Aggregation of elliptical random vectors

Example (Gaussian risks): If W 2 is chi-square distributed with k degrees of
freedom, then O = WU is Gaussian with independent components.

Let Y be given by
Y = AWU = AO

which has mean vector zero if E {W} is finite.

Recall that Y is called an elliptical RV and W > 0 is independent of
U = (U1, . . . , Uk).

Aggregation of elliptical RV’s is as easy as for the Gaussian case!
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Part 3: Comonotonic Risks
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Why comonotonic risks are tractable

Comonotonic risks are driven by a single source of randomness:

Xi = F−1
i (U), U ∼ Unif(0, 1)

Interpretation: All risks move together — when one is high, all are high.

This represents the “worst-case” dependence for aggregation:

• No diversification benefit

• Maximum possible correlation

Key result: VaR and TVaR are additive for comonotonic risks!
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Aggregation of comonotonic risks

Let Xi = hi(U), i ≤ k with U ∼ Unif(0, 1) and h1, . . . , hk some measurable
functions.

For constants ai, i ≤ k:

S = a1X1 + · · ·+ akXk
d
= a1h1(U) + · · ·+ akhk(U)

A simple instance is hi(U) = ciU , ci ∈ R, so

S
d
= (c1a1 + · · ·+ ckak)U
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VaR of monotone transforms

If h is monotone non-decreasing and continuous, we have

VaRh(X)(p) = h(VaRX(p)), p ∈ (0, 1)

This is true also if h is not continuous, but only left-continuous (recall that a
quantile function is always left-continuous).

Application: For any h1, . . . , hk which are monotone non-decreasing and
left-continuous:

VaR∑
1≤i≤k hi(U)(p) =

∑
1≤i≤k

VaRhi(U)(p), p ∈ (0, 1)

since h(x) =
∑

1≤i≤k hi(x) is monotone non-decreasing and left-continuous.

If Fi’s are df’s, then hi = F−1
i satisfy these assumptions.
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VaR additivity for comonotonic risks
Denoting by G the df of S =

∑k
i=1 F

−1
i (U), then

G−1(q) =

k∑
i=1

F−1
i (q), q ∈ (0, 1)

which simply means

VaRS(q) =

k∑
i=1

VaRXi(q)

This is the comonotonic additivity property of VaR as a risk measure.

The same holds for TVaR:

TVaRS(q) =

k∑
i=1

TVaRXi(q)
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Numerical example: Independence vs comonotonicity

Let X1, X2 ∼ Exp(1) (exponential with mean 1). We want VaRX1+X2(0.95).

Case 1: Independent risks

• X1 +X2 ∼ Gamma(2, 1) (Gamma distribution)

• VaRX1+X2(0.95) ≈ 5.32

Case 2: Comonotonic risks

• VaRXi(0.95) = − ln(0.05) ≈ 3.00

• VaRX1+X2(0.95) = 2× 3.00 = 6.00

Conclusion: Comonotonic VaR is ≈ 13% higher — no diversification benefit!
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Part 4: Bounds for Unknown Dependence
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Relaxing the goal

So far: We computed the exact distribution of S under special assumptions
(Gaussian, comonotonic).

Reality: Often we only know the marginals F1, . . . , Fk, but not the copula.

Relaxed goal: Instead of the exact distribution, find bounds that hold for any
dependence structure.

Why useful? Upper bounds give conservative capital requirements — safe even
in the worst case.
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Aggregation and comonotonic risks

Let X1, X2 be non-negative risks with marginal df’s F1, F2. Recall

Xi
d
= F−1

i (U), i = 1, 2

with U ∼ Unif(0, 1) and F−1
i the quantile function of Xi.

Note: This representation does not hold jointly unless (X1, X2) is a comonotonic
random vector.

Consider two models for aggregation:

S = X1 +X2 and S∗ = F−1
1 (U) + F−1

2 (U) =: Y1 + Y2

S∗ is simpler to calculate or simulate since only U is random.
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Comonotonic bounds

Key insight: Comonotonic risks are “maximally dependent” — they provide a
worst-case upper bound for any aggregation.

Why? For any risks (X1, X2) with given marginals, we have

(X1, X2) ⪯corr (F
−1
1 (U), F−1

2 (U))

in the correlation order (i.e., comonotonic has maximal correlation).

Consequence: For any d > 0,

E {(S − d)+} ≤ E {(S∗ − d)+} = E {(Y1 + Y2 − d)+}
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Comonotonic sums and stop-loss transform

Let q be such that d = F−1
S∗ (q) with F−1

S∗ the quantile function of S∗.

For comonotonic risks, the stop-loss transform is

E {(Y1 + Y2 − d)+} =

2∑
i=1

E {(Yi − di)+}

where
di = F−1

i (q), i = 1, 2

So we have
E {(S − d)+} ≤ E {(Y1 − d1)+}+ E {(Y2 − d2)+}
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Key takeaways

• Aggregation is hard because the distribution of S = X1 + · · ·+Xk depends
on the (often unknown) copula

• Gaussian/elliptical risks: Linear combinations remain in the same family

S ∼ N

∑
i

µi,
∑
i,j

aiajσij

 =⇒ closed-form VaR, TVaR

• Comonotonic risks: VaR and TVaR are additive

VaRS(p) =
∑
i

VaRXi(p)

• Unknown dependence: Comonotonic sum provides worst-case upper bound

25 / 26



Questions/exercises

• Why does diversification reduce risk for independent risks but not for
comonotonic risks?

• We showed that Gaussian and comonotonic risks are “tractable.” What do
these two cases have in common that makes aggregation easy?

• In what sense is the comonotonic bound “conservative”? When might it be
too conservative to be useful?

• Regulators (Basel III) now require banks to use TVaR instead of VaR for
market risk. Why might this be a better choice?
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