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Learning objectives

Understand why risk aggregation matters for capital requirements

Compute aggregated risk for Gaussian and elliptical distributions

Apply VaR and TVaR additivity for comonotonic risks

e Use comonotonic bounds when the dependence structure is unknown
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Roadmap

1. The aggregation problem — why computing the distribution of
S =X1+ -+ Xy is difficult

2. Tractable case I: Gaussian & elliptical risks — closed-form aggregation
via variance

3. Tractable case II: Comonotonic risks — VaR and TVaR additivity

4. Bounds for unknown dependence — comonotonic upper bounds
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Why do we aggregate risks?

Regulatory requirements: Solvency II, Basel III/IV require insurers and banks
to hold capital against total portfolio risk, not individual risks.

Practical question: Given k business lines with risks X7, ..., X, what is the
capital requirement for the entire company?

Required capital = p(X; + --- + Xj) = p(5)
The challenge: We often know p(X;) for each line, but
p(S) # p(X1) +++ p(Xy) in general
Diversification benefit: Usually p(S) < ) . p(X;) — but by how much?

Remark: The inverse problem (disaggregation) — breaking down top-level
results to the portfolio level — is also important in practice.
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Part 1: The Aggregation Problem
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Why is risk aggregation challenging?
If Xi,..., X}, are independent, then S =}, X; is a convolution
Fg=Fx, x---x Fx,.
But even then, closed-form expressions for the convolution are rarely available!

If the copula C of (X1,...,Xk) is not the independence copula Cy, then S is
determined from both the marginal df’s and the copula C.

Typically, C' is unknown — so what can we do?

Three approaches:
1. Assume a specific copula — Monte Carlo simulation
2. Assume a tractable distribution family (Gaussian, elliptical)

3. Derive bounds that hold for any dependence structure
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Simulation approach: Aggregation of log-normal risks

In actuarial practice, risk aggregation is performed using Monte Carlo
simulations.

If X =(X1,...,X)" ~N(0,%), then
Y £ exp(X) ~ LN(0, %)
is a log-normal random vector.
Log-normal risks are important for both insurance and finance applications.
Using simulations, it is possible to calculate the df of
ar Y1+ +apYy

for constants a;, i < k.
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Part 2: (Gaussian & Elliptical Risks
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Why Gaussian risks are tractable

Key property: Linear combinations of jointly Gaussian random variables are
Gaussian.

If X =(Xy,...,Xx) ~ N(u,X), then for any constants aq, ..., a:
S=a X1+ - +apXp ~N Z @jfhis Zaiajo'ij
i 2

Consequence: Risk measures like VaR and TVaR can be computed in closed
form!

This extends to elliptically symmetric distributions (e.g., Student-t).
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Aggregation of Gaussian risks

Let X = (X1,...,X}) ~ N(0,%) with ¥ € R**¥ a covariance matrix.
For constants a;, i < k, we have
a1 X1+ 4 ap Xy, LV
with V ~ N(0,1).
Since bV ~ N(0,b?), the constant b is found by

b2 = Var{a1X1 —+ -+ aka} = Z ;00
1<i,5<k

Example (k = 2): b* = a?011 + a3022 + 2a1a2012
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Aggregation of randomly scaled risks

If X =(Xy,...,X)" ~ N(0,%) as above, then for the common shock model
Y=WX

with W > 0 independent of X, we have for constants a;, 1 < k:

arY1 + -+ arYs i W(a1X1 +---+ aka)
LWbV, V ~N(0,1)

A particular instance is the Student (or t) distribution.
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Radial representation of Gaussian vectors

Given a k x k real matrix A such that AAT = %, then
x<Laz

with Z having independent N (0, 1) components.

Important fact: the radius is independent of the angles, i.e.,

VA
R=\/Z?4 -+ Z,f is independent of U := (1

R

"R

11/26



Aggregation of spherically symmetric risks
Recall that if U = (U, ..., Uy) is uniformly distributed on the unit sphere

k
sklz{weRk:Zx$:1}

i=1

Z 7z
UL <thf) R=\|Z2+. + 22

and Z1,...,Z are iid N(0,1) rv’s independent of R.

then

If a;, i < k are real constants, then

Uy + -+ aUp £ U,
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Aggregation of elliptical random vectors

Example (Gaussian risks): If W? is chi-square distributed with k degrees of
freedom, then O = WU is Gaussian with independent components.

Let Y be given by
Y = AWU = AO

which has mean vector zero if E{W} is finite.

Recall that Y is called an elliptical RV and W > 0 is independent of
U= (Uy,...,Uy).

Aggregation of elliptical RV’s is as easy as for the Gaussian case!
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Part 3: Comonotonic Risks
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Why comonotonic risks are tractable

Comonotonic risks are driven by a single source of randomness:
X; = F '(U), U ~ Unif(0,1)
Interpretation: All risks move together — when one is high, all are high.

This represents the “worst-case” dependence for aggregation:
e No diversification benefit

e Maximum possible correlation

Key result: VaR and TVaR are additive for comonotonic risks!
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Aggregation of comonotonic risks

Let X; = h;(U), i < k with U ~ Unif(0, 1) and hy, ..., hi some measurable
functions.

For constants a;, i < k:

S=ar X1+ +apXy = arh1(U) + -+ + aphg(U)

A simple instance is h;(U) = ¢;U, ¢; € R, so

s 4 (cra1 + -+ + cpag)U
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VaR of monotone transforms

If ~ is monotone non-decreasing and continuous, we have

VaRy,x)(p) = h(VaRx(p)), p€(0,1)

This is true also if h is not continuous, but only left-continuous (recall that a
quantile function is always left-continuous).

Application: For any hy,...,h; which are monotone non-decreasing and
left-continuous:

VaRy . n@)() = D> VaRuw)(p), p€(0,1)
1<i<k

since h(x) = ) <;<p hi(z) is monotone non-decreasing and left-continuous.

If F;’s are df’s, then h; = F;l satisfy these assumptions.
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VaR additivity for comonotonic risks
Denoting by G the df of S = Zle F7YU), then

which simply means

VaRs(q Z VaRx, (

This is the comonotonic additivity property of VaR as a risk measure.

The same holds for TVaR:

TVaRs(q ZTVaRX( )
i=1
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Numerical example: Independence vs comonotonicity

Let X1, X2 ~ Exp(1) (exponential with mean 1). We want VaRx,x,(0.95).

Case 1: Independent risks
e X + Xy ~ Gamma(2, 1) (Gamma distribution)
e VaRyx, +x,(0.95) ~ 5.32

Case 2: Comonotonic risks
e VaRy,(0.95) = —1In(0.05) ~ 3.00
e VaRyx, +x,(0.95) =2 x 3.00 = 6.00

Conclusion: Comonotonic VaR is & 13% higher — no diversification benefit!
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Part 4: Bounds for Unknown Dependence
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Relaxing the goal

So far: We computed the exact distribution of S under special assumptions
(Gaussian, comonotonic).

Reality: Often we only know the marginals Fi, ..., Fj, but not the copula.

Relaxed goal: Instead of the exact distribution, find bounds that hold for any
dependence structure.

Why useful? Upper bounds give conservative capital requirements — safe even
in the worst case.
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Aggregation and comonotonic risks

Let X1, X2 be non-negative risks with marginal df’s Fy, Fy. Recall
X, LN U), i=1,2
with U ~ Unif(0,1) and F; " the quantile function of X;.

Note: This representation does not hold jointly unless (X1, X3) is a comonotonic
random vector.

Consider two models for aggregation:
S=X1+X, and S*=F Y U)+F'U)=Y+Y,

S* is simpler to calculate or simulate since only U is random.
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Comonotonic bounds
Key insight: Comonotonic risks are “maximally dependent” — they provide a
worst-case upper bound for any aggregation.
Why? For any risks (X1, X2) with given marginals, we have
(XlaXZ) ecorr (Ffl(U),Fgl(U))
in the correlation order (i.e., comonotonic has maximal correlation).

Consequence: For any d > 0,

E{(S—d)+} <E{(S"—d)4} =E{(M1 + Y2 —d)4}
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Comonotonic sums and stop-loss transform

Let g be such that d = Fz!(¢) with Fg*l the quantile function of S*.

For comonotonic risks, the stop-loss transform is

2
E{Vi+Ya—d)s} => E{(Yi—di):}
=1
where

So we have

E{S—d)+} <E{(Y1 —di)+} +E{(Y2 —d2)+}
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Key takeaways

Aggregation is hard because the distribution of S = X + --- + X} depends
on the (often unknown) copula

Gaussian/elliptical risks: Linear combinations remain in the same family

S~N Z,Ui, Z a;a;o;; | == closed-form VaR, TVaR

7 ]
Comonotonic risks: VaR and TVaR are additive

VaRg(p) = Z VaRXi (p)

e Unknown dependence: Comonotonic sum provides worst-case upper bound
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Questions/exercises

e Why does diversification reduce risk for independent risks but not for
comonotonic risks?

e We showed that Gaussian and comonotonic risks are “tractable.” What do
these two cases have in common that makes aggregation easy?

e In what sense is the comonotonic bound “conservative”? When might it be
too conservative to be useful?

e Regulators (Basel III) now require banks to use TVaR instead of VaR for
market risk. Why might this be a better choice?
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