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Leargning objectives

• Introduction to bivariate df’s, pdf’s, survival functions

• Introduction of copulas

• Calculation of moments for vectors of bivariate risks
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Bivatiate random vectors and their joint df

Let X and Y be two random variables (rvs) with distribution functions (df’s) F1

and F2, respectively.

Definition 1 (Bivariate random vector and its joint df).

• The pair (X,Y ) is referred to as a bivariate random vector (RV).

• The joint df1 F of (X,Y ) is a function F : R2 → [0, 1] defined by

F (x, y) = P {X ≤ x, Y ≤ y} .

• We denote this by (X,Y ) ∼ F .

• Functions F1(x) = P {X ≤ x} and F2(y) = P {Y ≤ y} are called the
marginal dfs.

1df = distribution function
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Survival function

Let A = {X ≤ x} and B = {Y ≤ y}. Then

P {X ≤ x or Y ≤ y} = P {A ∪B} = P {A}+ P {B} − P {A ∩B}
= F1(x) + F2(y)− F (x, y).

Therefore,
P {X > x, Y > y} = 1− F1(x)− F2(y) + F (x, y).

Definition 2 (Survival function).

The function F̄ : R2 → [0, 1] defined by

F̄ (x, y) = P {X > x, Y > y}

is called the joint survival function of (X,Y ).
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Alternative forms of the same formula

By replacing Fi ⇝ 1− F i, we can easily derive from

F (x, y) = 1− F1(x)− F2(y) + F (x, y)

another equivalent formula

F (x, y) = F 1(x) + F 2(y)− 1 + F (x, y).

Both forms are occasionally useful.
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Product, upper and lower df’s

If X ∼ F1 is independent of Y ∼ F2, then the joint df of (X,Y ) is given by

F (x, y) = F1(x)F2(y).

Define further the upper df

H(x, y) = min(F1(x), F2(y))

and the lower df
G(x, y) = (F1(x) + F2(y)− 1)+,

where a+ = max(0, a).
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Not all functions are dfs

Question: A df is by definition a function such that F (x, y) = P {X ≤ x, Y ≤ y}
for some random vector (X,Y ). But if we are given a function F , how can we
check whether it is a df of some random vector (X,Y )?
Clearly, F must satisfy the following properties:

• F is increasing (non-decreasing) in each argument

• F is right-continuous

• F (x,−∞) = P {X ≤ x, Y ≤ −∞} = 0

• F (−∞, y) = P {X ≤ −∞, Y ≤ y} = 0

Are these conditions sufficient? Answer: No! There is one more condition:
probabilities of all rectangles must be non-negative, i.e.

P {a < X ≤ b, c < Y ≤ d} = F (b, d)− F (a, d)− F (b, c) + F (a, c) ≥ 0
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Exercise

Exercise. Check that the functions G and H defined earlier are indeed dfs.

G(x, y) = (F1(x) + F2(y)− 1)+, H(x, y) = min(F1(x), F2(y)).
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Quick checks if something is not a df

• If F assumes negative values, then it is not a df.

• If F assumes values greater than 1, then it is not a df.

• If F (x, y) is not increasing in x or y, then it is not a df.
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Joint df → marginal dfs

If (X,Y ) ∼ F , then the marginal dfs F1 and F2 can be obtained from F by

F1(x) = F (x,∞), F2(y) = F (∞, y).

Indeed, as y → ∞, the event {Y ≤ y} becomes certain.

• Question: Can we determine the joint df F from the marginal dfs F1 and F2?

• Answer: In general, no!

• There are infinitely many joint dfs with the same marginals, each
corresponding to a different dependence structure between X and Y .

• These dependence structures are encoded by copulas and will be the main
subject of this course.

9 / 23



Exercise

Exercise. Given marginal dfs F1 and F2, show that the function

F (x, y) = F1(x)F2(y)
(
1 + aF 1(x)F 2(y)

)
, a ∈ [−1, 1]

is a joint df with marginals F1 and F2.

This family of dfs is known as the FGM distribution/family of distributions.
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Joint df → joint pdf/pmf

Definition 3 (Joint pdf).

We say that a function f ≥ 0 is the joint pdf2 of a given df F if F can be
represented as

F (x, y) =

∫ x

−∞

∫ y

−∞
f(z, w) dzdw.

Definition 4 (Joint pmf).

We say that a function f ≥ 0 is the joint pmf3 of a given df F if F can be
represented as

F (x, y) =
∑

z≤x,w≤y

f(z, w).

2pdf = probability density function
3pmf = probability mass function
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Examples of a joint pdf/pmf

Let f(x, y) = 1 for all x, y ∈ [0, 1]2. Then the corresponding df is

F (x, y) =

∫ x

0

∫ y

0
f(s, t) dsdt =

∫ x

0

∫ y

0
ds dt = xy = F1(x)F2(y),

where
F1(x) = x and F2(y) = y for x, y ∈ [0, 1].

Thus, F is the joint df of two independent Unif(0, 1) random variables.

Similarly, let f(x, y) = 1
4 for all x, y ∈ {0, 1}2. Then the corresponding df is

F (x, y) = F1(x)F2(y),

where F1 and F2 are the dfs of two independent Ber(1/2) random variables.
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pdf (pmf) → joint df

If f ≥ 0 is an integrable (summable) function such that

∫
R2

f(x, y) dxdy = 1,

 ∞∑
i=1,j=1

f(xi, xj) = 1

 ,

then the function F defined by

F (x, y) =

∫ x

−∞

∫ y

−∞
f(z, w) dzdw,

F (x, y) =
∑

z≤x,w≤y

f(z, w)


is a df.

13 / 23



Differentiable joint df → joint pdf/pmf

Given an joint df F , such that the following mixed derivative

f(x, y) =
∂2F

∂x∂y
(x, y)

exists for almost all x, y ∈ R, can we conclude that f is the joint pdf (pmf) of F?

• If F is a df and the mixed partial derivative f exists, then f ≥ 0 automatically
(follows from the rectangle property), so we don’t need to check positivity.

• However, even if f ≥ 0, it may not be a pdf due to a loss of mass4: it is
possible to have

∫
R2 f(x, y) dx dy < 1.

• If f is continuous, then loss of mass cannot happen, so f is indeed the joint
pdf of F .

• If f is discontinuous, we have to check that
∫

R2 f(x, y) dx dy = 1.

4Where does mass go?
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Conditional pdf/pmf and marginal pdf/pmf

If (X,Y ) with joint df F has a joint pdf (pmf) f , then the conditional pdf (pmf) of
X | Y = y satisfies

f(x, y) = f2(y) f1|2(x | y), x, y ∈ R,

where f2 is the marginal pdf (pmf) of Y .

Moreover, from f we can calculate the marginal pdf’s (pmf’s) fi’s, namely

f1(x) =

∫
R
f(x, z)dz, f2(y) =

∫
R
f(z, y)dz, x, y ∈ R.

These are pdfs of F1 and F2.
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Expectations

Let (X,Y ) ∼ F and J : R2 → R be some function. Then, the expectation of
J(X,Y ) is defined by

E {J(X,Y )} =

∫
R2

J(x, y) dF (x, y).

If F has a joint pdf f , then

E {J(X,Y )} =

∫
R2

J(x, y) f(x, y) dxdy.

If F has a joint pmf f , then

E {J(X,Y )} =
∑
i,j

J(xi, xj) f(xi, xj).
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Smirnov transform/Inverse sampling method

Theorem 5.

• Let X be any random variable with continuous df F .

• Apply the df F to X: Y = F (X).

• Claim: Y ∼ Unif(0, 1).

Proof in the case when F is invertible:

P {Y ≤ y} = P {F (x) ≤ y} = P
{
X ≤ F−1(y)

}
= F (F−1(y)) = y,

which is the df of Unif(0, 1).
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Copulas

Definition 6 (Copula of a continuous bivariate df).

• Let (X,Y ) ∼ F be a bivariate random vector with continuous marginal dfs
F1 and F2.

• Then the copula C of F is the joint df of the random vector (F1(X), F2(Y )).

Note that the marginals of (F1(X), F2(Y )) are Unif(0, 1) by the Smirnov transform
theorem. This motivates the following alternative definition of a copula:

Definition 7 (Copula).

A copula is a bivariate df C whose marginals are Unif(0, 1).

The two definitions are equivalent in the sense that every copula is the copula of
some bivariate df and vice versa.
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Idea of copulas

• A copula C is a compact way to encode the dependence structure between
X and Y .

• By passing from (X,Y ) to (F1(X), F2(Y )), we throw away the information
about the marginal distributions of X and Y . The resulting vector does not
know anything about the laws of X and Y , but knows everything about how
X and Y depend on each other.

• If we know the copula C of F and the marginal dfs F1 and F2, then we can
reconstruct the joint df F . This is done by Sklar’s theorem, which will be
discussed later.
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Product, upper and lower copulas

Here are the most basic examples of copulas:

• The product copula CI(u1, u2) = u1u2 encodes independence. This is the
copula of two independent Unif(0, 1) random variables.

• The upper copula CU (u1, u2) = min(u1, u2) encodes perfect positive
dependence. This is the copula of (U,U) where U ∼ Unif(0, 1).

• The lower copula CL(u1, u2) = (u1 + u2 − 1)+ encodes perfect negative
dependence. This is the copula of (U, 1− U) where U ∼ Unif(0, 1).
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Not every function is a copula

Question: How can we check whether a given function C is a copula?

Clearly, C must satisfy the properties of a bivariate df. In addition, the marginals
of C must be Unif(0, 1), i.e.

C(u, 1) = u, C(1, u) = u, u ∈ [0, 1].

Are these conditions sufficient?

Answer: Yes! These conditions are necessary and sufficient for C to be a copula.
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Exercise

Exercise. Check that CL is the copula of (U, 1− U) where U ∼ Unif(0, 1) by
directly calculating its joint df.
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Upper and lower copulas do not have pdfs

Note that the functions

CU (u1, u2) = min(u1, u2) and CL(u1, u2) = (u1 + u2 − 1)+

are not differentiable on the diagonal u1 = u2, which is a set of Lebesgue measure
zero. However, their mixed partial derivatives away from the diagonal are equal to
zero5. Therefore, ∫

[0,1]2\{u1=u2}

∂2CU

∂u1 ∂u2
(u1, u2) du1du2 = 0,

and similarly for CL. Therefore, CU and CL do not have joint pdfs.

5Check this!
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