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Leargning objectives

• Understand uniform bivariate distributions on different domains;

• Introduce the concept of conditional independence;

• Introduce important classes of dependent risks cush as commonotonic,
countermonotonic, implicit and explicit risks;
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Uniform distribution on a rectangle

Consider the rectangle
D = [a, b]× [c, d] ⊂ R2.

Consider the following pdf1:

fD(x, y) =
1

(b− a)(d− c)
1{(x, y) ∈ D}.

Let F be the corresponding df.

Definition 1.
A random vector (X,Y ) with df F is said to be uniformly distributed on the
rectangle D. We denote this by (X,Y ) ∼ Unif(D).

1Why is this a valid pdf?
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Independent risks

Let F be some df and (X,Y ) ∼ F .

Theorem 2.
X and Y are independent if and only if F may be written as product of any2

two functions G and H, i.e.

F (x, y) = G(x)H(y).

Theorem 3.
Assume F has pdf/pmf f . Then (X,Y ) is independent if and only if f may be
written as product of any3 two functions g and h, i.e.

f(x, y) = g(x)h(y).

2Check that G(x) = cF1(x) and H(y) = F2(y)/c for some c > 0. In other words, G and H are
the marginal dfs up to a constant.

3Check that g(x) = cf1(x) and h(y) = f2(y)/c for some c > 0.
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Example: independence of uniform risks on a rectangle

Recall that the pdf of Unif(D) with D = [a, b]× [c, d] is

fD(x, y) =
1

(b− a)(d− c)
1{(x, y) ∈ D}.

Note that

fD(x, y) =
1

b− a
1{x ∈ [a, b]}︸ ︷︷ ︸

g(x)

· 1

d− c
1{y ∈ [c, d]}︸ ︷︷ ︸
h(y)

.

Hence, X and Y are independent.
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Uniform distribution on a set D

Let D ⊂ R2 be a set with positive and finite area

|D| =
∫∫

D
dx dy ∈ (0,∞).

Define the following pdf4:

fD(x, y) =
1

|D|
1{(x, y) ∈ D}.

Let F be the corresponding df.

Definition 4.
A random vector (X,Y ) with df F is said to be uniformly distributed on the
set D. We denote this by (X,Y ) ∼ Unif(D).

4Why is this a valid pdf?
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y ) ∼ Unif(D). If X and Y are independent, then D is of the form

D = A×B for some A,B ⊂ R

up to a set of zero area.

Proof. Assume that X and Y are independent:

fD(x, y) = g(x)h(y) =
1

|D|
1{(x, y) ∈ D}.

Take any point (x0, y0) ∈ D with fD(x0, y0) ̸= 0.
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y ) ∼ Unif(D). If X and Y are independent, then D is of the form

D = A×B for some A,B ⊂ R

up to a set of zero area.

Proof. We have: fD(x, y) = g(x)h(y), g(x0), h(y0) ̸= 0. Then,

fD(x0, y) = g(x0)h(y) =
1

|D|
1{y : (x0, y) ∈ D} =⇒ h(y) = c1{y : (x0, y) ∈ D}

fD(x, y0) = g(x)h(y0) =
1

|D|
1{x : (x, y0) ∈ D} =⇒ g(x) = c′ 1{x : (x, y0) ∈ D}
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Theorem 5.
Let (X,Y ) ∼ Unif(D). If X and Y are independent, then D is of the form

D = A×B for some A,B ⊂ R

up to a set of zero area.

Proof. We have: fD(x, y) = g(x)h(y), g(x0), h(y0) ̸= 0. Then,

h(y) = c1{y : (x0, y) ∈ D} = c1{y ∈ B} with B = {y : (x0, y) ∈ D}

g(x) = c′ 1{x : (x, y0) ∈ D} = c′ 1{x ∈ A} with A = {x : (x, y0) ∈ D}
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Theorem 5.
Let (X,Y ) ∼ Unif(D). If X and Y are independent, then D is of the form

D = A×B for some A,B ⊂ R

up to a set of zero area.

Proof. We have: fD(x, y) = g(x)h(y), g(x0), h(y0) ̸= 0. Then,

fD(x, y) = cc′ 1{x ∈ A} 1{y ∈ B} =⇒ D = A×B

up to a set of zero area.
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Conditional independence

Definition 6 (Conditional independence).

X1, . . . , Xd are conditionally independent given W = w if for all real
numbers x1, . . . , xd holds

P {X1 ≤ x1, . . . , Xd ≤ xd | W = w} =

d∏
i=1

P {Xi ≤ xi | W = w} .

If W is independent of X1, . . . , Xd, then conditional independence implies
independence.
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“Common deflator/inflator” dependence structure

Let Θ, Z1, Z2, . . . , Zd be independent exponentially distributed random
variables. Define

X1 =
Z1

Θ
, X2 =

Z2

Θ
, . . . , , Xd =

Zd

Θ
.

Then, conditionally on Θ = θ, X1, . . . , Xd are independent exponentially
distributed random variables.
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Comonotonic risks

Definition 7 (Comonotonic risks).

Random variables X and Y are said to be comonotonic if there exists one
random variable U ∼ Unif(1) (common risk) such that X = F−1

1 (U) and
Y = F−1

2 (U). We say that (X,Y ) is a comonotonic vector.

Example. Let X = c1U and Y = c2U , where c1, c2 > 0. Then (X,Y ) is a
comonotonic vector with Unif(0, ci) marginals.

Theorem 8 (Comonotonicity conditions).

The following conditions are equivalent:

• (X,Y ) is comonotonic

• F (x, y) = min(F1(x), F2(y)) (F is the upper df)

• There exists a random variable Z (common risk) and two non-decreasing
functions h1, h2 such that X = h1(Z) and Y = h2(Z).
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Stop-loss transform

Definition 9 (Stop-loss).

Let X be a random variable with df F1. Its stop-loss transform is defined as

Ys = max{0, X − s}, s ∈ R.

Let F2 be the df of Ys. Then

P {X ≤ x, (X − s)+ ≤ y} = min{F1(x), F2(y)}.

Hence, (X,Ys) is a comonotonic vector.
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Countermonotonic risks

Definition 10 (Countermonotonic risks).

Random variables X and Y are said to be countermonotonic if there exists
one random variable U ∼ Unif(1) such that X = F−1

1 (U) and Y = F−1
2 (1−U).

We say that (X,Y ) is a countermonotonic vector.

Theorem 11 (Countermonotonicity conditions).

The following conditions are equivalent:

• (X,Y ) is countermonotonic

• F (x, y) = max(F1(x) + F2(y)− 1, 0) (F is the lower df)

• There exists a random variable Z and two non-increasing functions h1, h2
such that X = h1(Z) and Y = h2(−Z).
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Explicit functional dependence with independent generators

Definition 12.
Let Z1, . . . , Zd be independent random variables and q : Rd → Rk some
function. Define

(X1, . . . , Xk) = q(Z1, . . . , Zd).

Then (X1, . . . , Xk) is said to be an explicit functional dependence model
with independent generators Z1, . . . , Zd.

Example. The path (X1, . . . , Xn) of a random walk

Xn =

n∑
i=1

Zi.
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Implicit functional dependence

Idea: given independent generators5 Z1, . . . , Zd, we can define a model implicitly
via a system of equations. For example, recursively.

Example. The path (X1, . . . , Xn) of a moving average time series

Xn+1 = anXn + an−1Xn−1

with X1 = V1 and X2 = V2.

Example. Define Xn+1 recursively as the solution of the following equation:

Xn+1 +

n∑
i=1

qi(Xi) = 0,

where qi are some known functions.

5Think of them as sources of randomness in the model.
13 / 14



Exercises/questions

• Is the df F corresponding to the following pdf

f(x, y) =
4xy + 2x+ 2y + 1

4
, (x, y) ∈ [0, 1]2

a product df?

• Is the df F corresponding to the pdf f(x, y) = x+ y a product df?

• If X and Y have correlation ρ = ±1, then (X,Y ) does not possess a pdf.
Why? How is this related to functional dependence?
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