

Lecture 2. Tractable dependence models

Enkelejd Hashorva & Pavel Ievlev
Université de Lausanne

19 September, 2025

Learning objectives

- Understand uniform bivariate distributions on different domains;
- Introduce the concept of **conditional independence**;
- Introduce important classes of dependent risks such as **common monotonic**, **countermonotonic**, **implicit** and **explicit** risks;

Uniform distribution on a rectangle

Consider the rectangle

$$D = [a, b] \times [c, d] \subset \mathbb{R}^2.$$

Consider the following pdf¹:

$$f_D(x, y) = \frac{1}{(b-a)(d-c)} \mathbb{1}\{(x, y) \in D\}.$$

Let F be the corresponding df.

Definition 1.

A random vector (X, Y) with df F is said to be **uniformly distributed** on the rectangle D . We denote this by $(X, Y) \sim \text{Unif}(D)$.

¹Why is this a valid pdf?

Independent risks

Let F be some df and $(X, Y) \sim F$.

Theorem 2.

X and Y are independent if and only if F may be written as product of any² two functions G and H, i.e.

$$F(x, y) = G(x)H(y).$$

Theorem 3.

Assume F has pdf/pmf f. Then (X, Y) is independent if and only if f may be written as product of any³ two functions g and h, i.e.

$$f(x, y) = g(x)h(y).$$

²Check that $G(x) = cF_1(x)$ and $H(y) = F_2(y)/c$ for some $c > 0$. In other words, G and H are the marginal dfs *up to a constant*.

³Check that $g(x) = cf_1(x)$ and $h(y) = f_2(y)/c$ for some $c > 0$.

Example: independence of uniform risks on a rectangle

Recall that the pdf of $\text{Unif}(D)$ with $D = [a, b] \times [c, d]$ is

$$f_D(x, y) = \frac{1}{(b-a)(d-c)} \mathbb{1}\{(x, y) \in D\}.$$

Note that

$$f_D(x, y) = \underbrace{\frac{1}{b-a} \mathbb{1}\{x \in [a, b]\}}_{g(x)} \cdot \underbrace{\frac{1}{d-c} \mathbb{1}\{y \in [c, d]\}}_{h(y)}.$$

Hence, X and Y are independent.

Uniform distribution on a set D

Let $D \subset \mathbb{R}^2$ be a set with **positive and finite** area

$$|D| = \iint_D dx dy \in (0, \infty).$$

Define the following pdf⁴:

$$f_D(x, y) = \frac{1}{|D|} \mathbb{1}\{(x, y) \in D\}.$$

Let F be the corresponding df.

Definition 4.

A random vector (X, Y) with df F is said to be **uniformly distributed** on the set D . We denote this by $(X, Y) \sim \text{Unif}(D)$.

⁴Why is this a valid pdf?

Uniform distribution on D is typically not independent

Theorem 5.

Let $(X, Y) \sim \text{Unif}(D)$. If X and Y are independent, then D is of the form

$$D = A \times B \quad \text{for some} \quad A, B \subset \mathbb{R}$$

up to a set of zero area.

Proof. Assume that X and Y are independent:

$$f_D(x, y) = g(x)h(y) = \frac{1}{|D|} \mathbb{1}\{(x, y) \in D\}.$$

Take any point $(x_0, y_0) \in D$ with $f_D(x_0, y_0) \neq 0$.

Uniform distribution on D is typically not independent

Theorem 5.

Let $(X, Y) \sim \text{Unif}(D)$. If X and Y are independent, then D is of the form

$$D = A \times B \quad \text{for some} \quad A, B \subset \mathbb{R}$$

up to a set of zero area.

Proof. We have: $f_D(x, y) = g(x) h(y)$, $g(x_0), h(y_0) \neq 0$.

Uniform distribution on D is typically not independent

Theorem 5.

Let $(X, Y) \sim \text{Unif}(D)$. If X and Y are independent, then D is of the form

$$D = A \times B \quad \text{for some} \quad A, B \subset \mathbb{R}$$

up to a set of zero area.

Proof. We have: $f_D(x, y) = g(x) h(y)$, $g(x_0), h(y_0) \neq 0$. Then,

$$f_D(x_0, y) = g(x_0) h(y) = \frac{1}{|D|} \mathbb{1}\{y : (x_0, y) \in D\} \implies h(y) = c \mathbb{1}\{y : (x_0, y) \in D\}$$

$$f_D(x, y_0) = g(x) h(y_0) = \frac{1}{|D|} \mathbb{1}\{x : (x, y_0) \in D\} \implies g(x) = c' \mathbb{1}\{x : (x, y_0) \in D\}$$

Uniform distribution on D is typically not independent

Theorem 5.

Let $(X, Y) \sim \text{Unif}(D)$. If X and Y are independent, then D is of the form

$$D = A \times B \quad \text{for some} \quad A, B \subset \mathbb{R}$$

up to a set of zero area.

Proof. We have: $f_D(x, y) = g(x)h(y)$, $g(x_0), h(y_0) \neq 0$. Then,

$$h(y) = c \mathbb{1}\{(x_0, y) \in D\} = c \mathbb{1}\{y \in B\} \quad \text{with} \quad B = \{y : (x_0, y) \in D\}$$

$$g(x) = c' \mathbb{1}\{(x, y_0) \in D\} = c' \mathbb{1}\{x \in A\} \quad \text{with} \quad A = \{x : (x, y_0) \in D\}$$

Uniform distribution on D is typically not independent

Theorem 5.

Let $(X, Y) \sim \text{Unif}(D)$. If X and Y are independent, then D is of the form

$$D = A \times B \quad \text{for some} \quad A, B \subset \mathbb{R}$$

up to a set of zero area.

Proof. We have: $f_D(x, y) = g(x)h(y)$, $g(x_0), h(y_0) \neq 0$. Then,

$$f_D(x, y) = cc' \mathbb{1}\{x \in A\} \mathbb{1}\{y \in B\} \implies D = A \times B$$

up to a set of zero area. □

Conditional independence

Definition 6 (Conditional independence).

X_1, \dots, X_d are **conditionally independent** given $W = w$ if for all real numbers x_1, \dots, x_d holds

$$\mathbb{P} \{X_1 \leq x_1, \dots, X_d \leq x_d \mid W = w\} = \prod_{i=1}^d \mathbb{P} \{X_i \leq x_i \mid W = w\}.$$

If W is independent of X_1, \dots, X_d , then conditional independence implies independence.

“Common deflator/inflator” dependence structure

Let $\Theta, Z_1, Z_2, \dots, Z_d$ be **independent** exponentially distributed random variables. Define

$$X_1 = \frac{Z_1}{\Theta}, \quad X_2 = \frac{Z_2}{\Theta}, \quad \dots, \quad X_d = \frac{Z_d}{\Theta}.$$

Then, **conditionally on** $\Theta = \theta$, X_1, \dots, X_d are **independent** exponentially distributed random variables.

Comonotonic risks

Definition 7 (Comonotonic risks).

Random variables X and Y are said to be **comonotonic** if there exists **one** random variable $U \sim \text{Unif}(1)$ (common risk) such that $X = F_1^{-1}(U)$ and $Y = F_2^{-1}(U)$. We say that (X, Y) is a **comonotonic vector**.

Example. Let $X = c_1 U$ and $Y = c_2 U$, where $c_1, c_2 > 0$. Then (X, Y) is a comonotonic vector with $\text{Unif}(0, c_i)$ marginals.

Theorem 8 (Comonotonicity conditions).

The following conditions are equivalent:

- (X, Y) is comonotonic
- $F(x, y) = \min(F_1(x), F_2(y))$ (F is the **upper df**)
- There exists a random variable Z (common risk) and two non-decreasing functions h_1, h_2 such that $X = h_1(Z)$ and $Y = h_2(Z)$.

Stop-loss transform

Definition 9 (Stop-loss).

Let X be a random variable with df F_1 . Its **stop-loss transform** is defined as

$$Y_s = \max\{0, X - s\}, \quad s \in \mathbb{R}.$$

Let F_2 be the df of Y_s . Then

$$\mathbb{P}\{X \leq x, (X - s)_+ \leq y\} = \min\{F_1(x), F_2(y)\}.$$

Hence, (X, Y_s) is a comonotonic vector.

Countermonotonic risks

Definition 10 (Countermonotonic risks).

Random variables X and Y are said to be **countermonotonic** if there exists **one** random variable $U \sim \text{Unif}(1)$ such that $X = F_1^{-1}(U)$ and $Y = F_2^{-1}(1 - U)$. We say that (X, Y) is a **countermonotonic vector**.

Theorem 11 (Countermonotonicity conditions).

The following conditions are equivalent:

- (X, Y) is countermonotonic
- $F(x, y) = \max(F_1(x) + F_2(y) - 1, 0)$ (F is the **lower df**)
- There exists a random variable Z and two non-increasing functions h_1, h_2 such that $X = h_1(Z)$ and $Y = h_2(-Z)$.

Explicit functional dependence with independent generators

Definition 12.

Let Z_1, \dots, Z_d be **independent** random variables and $q : \mathbb{R}^d \rightarrow \mathbb{R}^k$ some function. Define

$$(X_1, \dots, X_k) = q(Z_1, \dots, Z_d).$$

Then (X_1, \dots, X_k) is said to be an **explicit functional dependence model** with **independent generators** Z_1, \dots, Z_d .

Example. The path (X_1, \dots, X_n) of a **random walk**

$$X_n = \sum_{i=1}^n Z_i.$$

Implicit functional dependence

Idea: given independent generators⁵ Z_1, \dots, Z_d , we can define a model **implicitly via a system of equations**. For example, **recursively**.

Example. The path (X_1, \dots, X_n) of a **moving average time series**

$$X_{n+1} = a_n X_n + a_{n-1} X_{n-1}$$

with $X_1 = V_1$ and $X_2 = V_2$.

Example. Define X_{n+1} recursively as the **solution** of the following equation:

$$X_{n+1} + \sum_{i=1}^n q_i(X_i) = 0,$$

where q_i are some known functions.

⁵Think of them as *sources of randomness* in the model.

Exercises/questions

- Is the df F corresponding to the following pdf

$$f(x, y) = \frac{4xy + 2x + 2y + 1}{4}, \quad (x, y) \in [0, 1]^2$$

a **product** df?

- Is the df F corresponding to the pdf $f(x, y) = x + y$ a product df?
- If X and Y have correlation $\rho = \pm 1$, then (X, Y) does not possess a pdf. Why? How is this related to functional dependence?