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Leargning objectives

e Understand uniform bivariate distributions on different domains;
e Introduce the concept of conditional independence;

e Introduce important classes of dependent risks cush as commonotonic,
countermonotonic, implicit and explicit risks;
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Uniform distribution on a rectangle

Consider the rectangle
D = [a,b] x [¢,d] C R%

Consider the following pdf:

1

fp(z,y) = m

H(z,y) € D}.
Let F' be the corresponding df.

Definition 1.
A random vector (X,Y’) with df F' is said to be uniformly distributed on the
rectangle D. We denote this by (X,Y) ~ Unif(D).

"Why is this a valid pdf?
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Independent risks
Let F' be some df and (X,Y) ~ F.

Theorem 2.
X and Y are independent if and only if F' may be written as product of any?
two functions G and H, i.e.

F(z,y) = G(z)H(y).

Theorem 3.
Assume F has pdf/pmf f. Then (X,Y) is independent if and only if f may be
written as product of any® two functions g and h, i.e.

f(z,y) = g(z)h(y).

2Check that G(z) = cFi(x) and H(y) = Fx(y)/c for some ¢ > 0. In other words, G and H are
the marginal dfs up to a constant.

3Check that g(z) = cfi(z) and h(y) = fa(y)/c for some ¢ > 0.
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Example: independence of uniform risks on a rectangle

Recall that the pdf of Unif(D) with D = [a,b] X [¢,d] is

1
fp(z,y) = b—a)d—0) 1{(z,y) € D}.

Note that ) .
folw,y) = 71w € a0} —— 1y € [e,d]}.

9(z) h(y)

Hence, X and Y are independent.
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Uniform distribution on a set D

Let D C R? be a set with positive and finite area

|D| = //D dx dy € (0,00).

Define the following pdf*:

1
fo(z,y) = 7] H(z,y) € D}.

Let F be the corresponding df.

Definition 4.
A random vector (X,Y) with df F' is said to be uniformly distributed on the
set D. We denote this by (X,Y") ~ Unif(D).

4Why is this a valid pdf?
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y) ~ Unif(D). If X and Y are independent, then D is of the form

D=AxB forsome A,BCR

up to a set of zero area.

Proof. Assume that X and Y are independent:
1

Take any point (xg,yo) € D with fp(xg,yo) # 0.
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y) ~ Unif(D). If X and Y are independent, then D is of the form

D=AxB forsome A,BCR

up to a set of zero area.

Proof.  We have: fp(z,y) = g(z) h(y), g(xo), h(yo) # 0.
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y) ~ Unif(D). If X and Y are independent, then D is of the form

D=AxB forsome A,BCR

up to a set of zero area.

Proof. We have: fp(z,y) = g(x) h(y), g(xo), h(yo) # 0. Then,

fp(z0,y) = 9(0) h(y) = ,j)‘ 1y : (z0.y) € D} = h(y) = c1{y: (x0.y) € D}

1

fo(z,y0) = g(z) h(yo) = 1] Hz: (z,90) € D} = g(x) = Ya: (z,90) € D}
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y) ~ Unif(D). If X and Y are independent, then D is of the form

D=AxB forsome A,BCR

up to a set of zero area.

Proof. We have: fp(z,y) = g(x) h(y), g(xo), h(yo) # 0. Then,
hy) =cl{y : (zo,y) € D} =cl{y € B} with B={y: (z9,y) € D}

g(@) = Yz : (v,y90) € D} = 1{x € A} with A= {z:(x,y) € D}
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Uniform distribution on D is typically not independent

Theorem 5.
Let (X,Y) ~ Unif(D). If X and Y are independent, then D is of the form

D=AxB forsome A,BCR

up to a set of zero area.

Proof. We have: fp(z,y) = g(x)h(y), g(xo), h(yo) # 0. Then,
fo(z,y) =cd1{zr € A}1{ye B} = D=AxB

up to a set of zero area. O

6/14



Conditional independence

Definition 6 (Conditional independence).

Xi,...,X4 are conditionally independent given W = w if for all real
numbers xy, ..., x4 holds

d
P{Xi1<m,....Xg<aq | W=w}=]][P{Xi<ai | W=uw}.
=1

If W is independent of X1, ..., X4, then conditional independence implies
independence.
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“Common deflator/inflator” dependence structure

Let ©, Z1, Zs,...,Z4 be independent exponentially distributed random
variables. Define

Z Zo Zg

—, Xo=—-=, ... Xg=—.

e’ e v T g

Then, conditionally on © =6, X,..., X, are independent exponentially
distributed random variables.

X =
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Comonotonic risks

Definition 7 (Comonotonic risks).

Random variables X and Y are said to be comonotonic if there exists one
random variable U ~ Unif(1) (common risk) such that X = F; *(U) and
Y = F; }(U). We say that (X,Y) is a comonotonic vector.

Example. Let X = ;U and Y = ¢uU, where ¢1,c2 > 0. Then (X,Y) is a
comonotonic vector with Unif(0, ¢;) marginals.

Theorem 8 (Comonotonicity conditions).
The following conditions are equivalent:

e (X.,Y) is comonotonic

e F(z,y) = min(Fy(x), F5(y)) (F is the upper df)

e There exists a random wvariable Z (common risk) and two non-decreasing
functions hy, hy such that X = hi(Z) and Y = ho(Z).
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Stop-loss transform

Definition 9 (Stop-loss).

Let X be a random variable with df Fj. Its stop-loss transform is defined as

Ys = max{0,X — s}, seR.

Let F5 be the df of Y. Then
P{X <z, (X —s)y <y} = min{Fi(2), B(y)}

Hence, (X,Y5) is a comonotonic vector.
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Countermonotonic risks

Definition 10 (Countermonotonic risks).

Random variables X and Y are said to be countermonotonic if there exists
one random variable U ~ Unif(1) such that X = F;'(U) and Y = F, }(1 — U).
We say that (X,Y) is a countermonotonic vector.

Theorem 11 (Countermonotonicity conditions).
The following conditions are equivalent:

e (X,Y) is countermonotonic

o F(x,y) =max(Fi(z) + Fa(y) — 1,0) (F is the lower df)

e There exists a random wvariable Z and two non-increasing functions hi, ho
such that X = h1(Z) and Y = ha(—2).
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Explicit functional dependence with independent generators

Definition 12.
Let Z1,...,Z; be independent random variables and ¢ : R — R* some
function. Define

(Xl, PN ,Xk) = q(Zl, ey Zd)

Then (X7q,..., X) is said to be an explicit functional dependence model
with independent generators Z1,...,Z,.

Example. The path (Xi,...,X,) of a random walk

n
X, = ZZ
=1
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Implicit functional dependence

Idea: given independent generators® Zi,. .., Zg, we can define a model implicitly
via a system of equations. For example, recursively.

Example. The path (Xi,...,X,) of a moving average time series
Xpy1 = an Xy +ap1Xp1
with X1 == Vi and X2 == VQ.

Example. Define X,,11 recursively as the solution of the following equation:
n
Xn+1 + qu(Xl) =0,
i=1

where ¢; are some known functions.

5Think of them as sources of randomness in the model.
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Exercises/questions

e Is the df F' corresponding to the following pdf

doy +2x+2y+1
flz,y) = 1 ,

(z,y) € [0,1)?

a product df?
e Is the df F' corresponding to the pdf f(z,y) = x + y a product df?

e If X and Y have correlation p = 41, then (X,Y’) does not possess a pdf.

Why? How is this related to functional dependence?
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