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Leargning objectives

• Understanding the multivariate (d-dimensional) dfs & pdfs;

• Focus on the properties of Gaussian random vectors;

• Understand the radial representation of Gaussian and elliptiocally symmetric
random vectors;
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Joint dfs of random vectors

Definition 1 (Distribution of a random vector).

Let X = (X1, . . . , Xd) be a d-dimensional random vector. Its joint df is the
function F : Rd → [0, 1] defined by

F (x) = P {X1 ≤ x1, . . . , Xd ≤ xd} = P {X ≤ x} .

We say that f is the joint pdf of F if F admits the following representation:

F (x) =

∫ x1

−∞
· · ·
∫ xd

−∞
f(y1, . . . , yd) dy1 . . . dyd.

2 / 19



Examples of d-dimensional dfs

• F =
∏d

i=1 Fi the product df (independent components);

• F = mini=1,...,d Fi the upper df (complete positive dependence);

• If D ⊂ Rd is a set of positive and finite volume |D|, then

fD(x) = 1{x ∈ D}/|D|

is a valid pdf (uniform distribution on D);

• Important special case: D = Sd−1 = {x ∈ Rd : x21 + · · ·+ x2d = 1} (the unit
sphere in Rd);
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Lower “df” is not a df unless d = 2

Remark. The following natural analogue of the lower df

F (x) =

(
d∑

i=1

Fi(x)− 1

)
+

is not a valid df for d ≥ 3.

Think what could “countermonotonicity” mean in d dimensions?
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Not every function is a joint df

As in the bivariate case, the following conditions are clearly necessary for F to be
a joint df:

(C1) F is non-decreasing in each argument;

(C2) F is right-continuous;

(C3) lim
xi→−∞

F (x) = 0 for all i ≤ d and lim
x→∞

F (x) = 1;

However, there is one more property that is necessary:

∆1,h1(h1) . . .∆d,hd
F (x) ≥ 0 for all h ≥ 0,

where ∆i is the difference operator defined by

∆i,hi
F (x) = F (x1, . . . , xi−1, xi + hi, xi+1, . . . , xd)− F (x1, . . . , xi−1, xi, xi+1, . . . , xd)

This property is called the ∆-monotonicity.
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Meaning of ∆-monotonicity

The following formula explains the meaning of ∆-monotonicity:

∆1,h1 . . .∆d,hd
F (x) = P {x < X ≤ x+ h} ≥ 0.

Recall that in the bivariate case we had

∆1,h1∆2,h2F (x1, x2)

= F (x1 + h1, x2 + h2)− F (x1 + h1, x2)− F (x1, x2 + h2) + F (x1, x2) ≥ 0.
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Multivariate copulas

Definition 2 (Copula of a random vector).

Let X = (X1, . . . , Xd) be a random vector with continuous marginals F1, . . . , Fd.
The df C of the random vector (F1(X1), . . . , Fd(Xd)) is called the copula of X.

By Smirnov’s theorem, marginals of C are Unif(0, 1), which motivates the
following abstract definition of a copula:

Definition 3 (Copula).

A copula is a d-dimensional df C with Unif(0, 1) marginals.

The two definitions are equivalent in the sense that every copula in the abstract
sense is the copula of some random vector.

7 / 19



Examples of multivariate copulas

As in the bivariate case, we can define the product (independence) copula

CI(u) =

d∏
i=1

ui, u ∈ [0, 1]d,

and the upper copula

CU (u) = min
i=1,...,d

ui, u ∈ [0, 1]d.

However, as noted above, there is no notion of lower copula for d ≥ 3, because
there is no notion of lower df.

The function
(∑d

i=1 ui − d+ 1
)
+
plays some important role in the theory of

copulas, but it is not a copula itself unless d = 2.
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Covariance matrix

Definition 4 (Covariance matrix).

If X = (X1, . . . , Xd) is a random vector with finite second moments, then its
covariance matrix Σ is the d× d matrix with entries

Σij = Cov(Xi, Xj) = E {(Xi − E {Xi})(Xj − E {Xj})} .
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Gaussian random vectors

Definition 5 (Gaussian random vector).

• If Z1, . . . , Zd are independent N(0, 1) random variables, then Z =
(Z1, . . . , Zd) is called a standard Gaussian random vector in Rd. This is
denoted by Z ∼ Nd(0, I), where I is the d× d identity matrix.

• If µ ∈ Rd is a vector and A ∈ Rd×d is a matrix, then X = µ+ AZ is called
a Gaussian random vector in Rd with mean vector µ and covariance
matrix Σ = AA⊤. This is denoted by Y ∼ Nd(µ,Σ).
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Moment generating function of a Gausian vector

Definition 6 (Moment generating function).

If X is a rangom vector, then its mgf1 is the function m defined by

m(t) = E
{
et

⊤X
}
= E

{
exp

(
d∑

i=1

tiXi

)}
, t ∈ Rd.

Theorem 7.
If Y ∼ N(µ,Σ), then m(t) = exp

(
t⊤µ+ 1

2t
⊤Σ t

)
.

1mgf = moment generating function
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Remarks on the mgf of a Gaussian vector

Remark 1. The mgf uniquely determines the distribution of X (if it exists in a
neighborhood of 0).

Remark 2. Note that the formula depends on Σ, not on A. Hence, the laws of

Y = µ+AZ and Y ′ = µ+A′Z

coincide if AA⊤ = A′A′⊤.
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Pdf of a Gaussian vector

If Σ is non-singular (invertible), then the pdf of Y ∼ Nd(µ,Σ) is given by

φd(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2(x− µ)⊤Σ−1(x− µ)
)
, y ∈ Rd,

where |Σ| = det(Σ) > 0 is the determinant of Σ.

If Σ is singular, then fY does not exist (the distribution of Y is concentrated
on a hyperplane2 in Rd).

2Imagine how it looks like in d = 2 and d = 3.
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Bivariate Gaussian pdf

If Y ∼ N(0,Σ), the marginals are unit Gaussian (Y1, Y2 ∼ N(0, 1)), and the
correlation between Y1 and Y2 is ρ ∈ (−1,1), then the matrix Σ is given by

Σ =

(
1 ρ
ρ 1

)
and Gaussian pdf simplifies to

φ2(x1, x2) =
1

2π
√
1− ρ2

exp

(
−x21 − 2ρx1x2 + x22

2(1− ρ2)

)
.

If ρ = ±1, then Σ is singular and the distribution of Y is concentrated on the
line

{(x, y) : y = ±x},

so the pdf does not exist.

14 / 19



Conditional distributions of a bivariate Gaussian vector

Let Y ∼ N(0,Σ) be a centered bivariate Gaussian vector. As mentioned above,
there are many ways to factorize Σ as AA⊤. One possible choice is3

A =

(
σ1 0

ρσ2 σ2
√
1− ρ2

)
.

Therefore, with Z ∼ N2(0, I) we have

X = AZ =

(
σ1Z1

ρσ2Z1 + σ2
√
1− ρ2Z2.

)
Hence, the conditional distribution of X2 given X1 = x1 is

(X2 | X1 = x1) ∼ N

(
ρσ2
σ1

x1, σ
2
2(1− ρ2)

)
.

3Check that AA⊤ = Σ.
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Radial representation of a Gaussian vector

Let Z be a standard Gaussian vector: Z ∼ N(0, I). Define its length (or
radius) by

R =
√

Z2
1 + · · ·+ Z2

d .

Theorem 8 (Radial representation of a Gaussian vector).

• R2 ∼ Gamma(d2 ,
1
2).

• U = Z/R ∼ Unif(Sd−1).

• U is independent of R.

• Hence, Z may be written as Z = RU , where R is an R1 random variable
independent of U ∼ Unif(Sd−1).

• If X ∼ Nd(µ,Σ), then X
d
= µ+RAU with any4 A such that Σ = AA⊤.

4A always exists, but is not unique
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Elliptically symmetric random vectors

The radial representation of a Gaussian vector motivates the following definition:

Definition 9 (Elliptically symmetric random vector).

A random vector X in Rd is called elliptically symmetric if it admits the
representation

X
d
= µ+RAU ,

where µ ∈ Rd, A ∈ Rd×d, R ≥ 0 is an R1 random variable5, and U ∼ Unif(Sd−1)
is independent of R. This is denoted by X ∼ Ed(µ, A,H), where H is the df of
R. The matrix Σ = AA⊤ is called the dispersion matrix6 of X.

5Not necessarily Gamma( d
2
, 1
2
)

6This is not a covariance matrix unless X is Gaussian.
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Examples of elliptical distributions

• Let S > 0 be a random variable independent of V 2 ∼ Gamma(d2 ,
1
2). Define

R = SV . This gives an elliptical random vector X called the (scale)
mixture of a Gaussian random vector.

• If R2 = α/Y , where Y ∼ Gamma(α2 ,
1
2), then Y is called a multivariate

t-distribution (Student distribution) with α degrees of freedom.
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Exercises/questions

• Calculate ∆1,h1∆2,h2F for a bivariate df F by hand and check that it agrees
with the formula from Lecture 1.

• If (X1, X2, X3) ∼ F has pdf f , what is the df of (X1, X2) and does it have a
pdf?

• Describe the distribution N(µ, 0). If Y ∼ N(a, σ2), then is (µ, Y ) a Gaussian
vector?

• Consider Y = RAU , where R = SV , S and V are independent and
V 2 ∼ Gamma(d2 ,

1
2). Find the covariance matrix of Y in terms of E

{
S2
}
and

matrix A.
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