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Leargning objectives

e Understanding the multivariate (d-dimensional) dfs & pdfs;
e Focus on the properties of Gaussian random vectors;

e Understand the radial representation of Gaussian and elliptiocally symmetric
random vectors;
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Joint dfs of random vectors

Definition 1 (Distribution of a random vector).

Let X = (Xy,...,Xy4) be a d-dimensional random vector. Its joint df is the
function F : R? — [0, 1] defined by

F(x) =P{Xi <@,...,Xq < g} =P{X < z}.

We say that f is the joint pdf of F' if F' admits the following representation:

F(m):/_9:"'/_g:f(yly---7yd)dyl---dyd-
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Examples of d-dimensional dfs

F= Hle F; the product df (independent components);

F = min;—; 4 F; the upper df (complete positive dependence);

If D C R?is a set of positive and finite volume |D|, then
fp(x) = Wz € D}/|D|

is a valid pdf (uniform distribution on D);
Important special case: D =S4 1 = {z € R?: 23 4 -+ + 22 = 1} (the unit
sphere in RY);
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Lower “df” is not a df unless d = 2

Remark. The following natural analogue of the lower df

d
F(z) = (Z Fy(x) — 1)
=1

+

is not a valid df for d > 3.

Think what could “countermonotonicity” mean in d dimensions?
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Not every function is a joint df

As in the bivariate case, the following conditions are clearly necessary for F' to be
a joint df:

(C1) F is non-decreasing in each argument;

(C2) F is right-continuous;

(C3) lim F(x)=0forali<dand lim F(x)=1,
Ti—>—00

r—00

However, there is one more property that is necessary:
Ay p(h1)...Agp,F(x) >0 forall h>0,
where A, is the difference operator defined by
AjpFx)=F(x1,...,xi—1, 0+ hi, Tig1, ., 2q) — F(x1, .., Tim1, 24, Tig1, ..., 2q)
This property is called the A-monotonicity.
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Meaning of A-monotonicity

The following formula explains the meaning of A-monotonicity:
Ath ~--Ad,hdF(-'13) = P{(I: <X SCC-Fh} > 0.
Recall that in the bivariate case we had
At py Do p, F(21,22)

= F(x1 + hi, 22 + hg) — F(x1 + h1,22) — F(x1,22 + he) + F(x1,22) > 0
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Multivariate copulas

Definition 2 (Copula of a random vector).

Let X = (X1,...,Xy) be a random vector with continuous marginals F7, ..., Fy.
The df C of the random vector (F1(X1),...,Fq(Xg)) is called the copula of X.

By Smirnov’s theorem, marginals of C' are Unif(0, 1), which motivates the
following abstract definition of a copula:

Definition 3 (Copula).
A copula is a d-dimensional df C' with Unif(0, 1) marginals.

The two definitions are equivalent in the sense that every copula in the abstract
sense s the copula of some random vector.
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Examples of multivariate copulas

As in the bivariate case, we can define the product (independence) copula

Huz, e [0,1]4,

and the upper copula

Cy(u) = min u;, wuel0,1].

i=1,....d

However, as noted above, there is no notion of lower copula for d > 3, because
there is no notion of lower df.

The function (Z?Zl u; —d+ 1) plays some important role in the theory of
+

copulas, but it is not a copula itself unless d = 2.
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Covariance matrix

Definition 4 (Covariance matrix).

If X =(Xy,...,Xy) is a random vector with finite second moments, then its
covariance matrix Y is the d x d matrix with entries

¥ij = Cov(X;, Xj) = E{(X; — E{Xi})(X; —E{X;})}.
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Gaussian random vectors

Definition 5 (Gaussian random vector).

o If Zy,...,Z; are independent N(0,1) random variables, then Z =
(Z1,...,7,) is called a standard Gaussian random vector in R?. This is
denoted by Z ~ Ny(0,1), where I is the d x d identity matrix.

o If u € R% is a vector and A € R™*? is a matrix, then X = p + AZ is called
a Gaussian random vector in R? with mean vector p and covariance
matrix ¥ = AAT. This is denoted by Y ~ Ny(u, X).
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Moment generating function of a Gausian vector

Definition 6 (Moment generating function).

If X is a rangom vector, then its mgf! is the function m defined by

m(t) =E {etTX} =E {exp <zd: tiXZ-) } , teR%

i=1

Theorem 7.
IfY ~ N(p, X), then m(t) = exp <tTu +1it's t) .

!mgf = moment generating function
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Remarks on the mgf of a Gaussian vector

Remark 1. The mgf uniquely determines the distribution of X (if it exists in a
neighborhood of 0).

Remark 2. Note that the formula depends on Y, not on A. Hence, the laws of
Y=pu+AZ and Y' =pu+A4Z

coincide if AAT = A’A'T.

12/19



Pdf of a Gaussian vector

If ¥ is non-singular (invertible), then the pdf of Y ~ Ny(u,X) is given by

1 -
pa(x) = WGXP (—%(m —p)' (= - H)) , yEeRY,

where 3| = det(X) > 0 is the determinant of X.

If ¥ is singular, then fy does not exist (the distribution of Y is concentrated
on a hyperplane? in R?).

2Imagine how it looks like in d = 2 and d = 3.
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Bivariate Gaussian pdf

If Y ~ N(0,%), the marginals are unit Gaussian (Y1,Y2 ~ N(0,1)), and the
correlation between Y; and Y3 is p € (—1, 1), then the matrix ¥ is given by

(9

o(w1,22) = 1 <—$% — 2pm1% + x%)
’ 2my/1 — p? 2(1—p?)

If p = 41, then X is singular and the distribution of Y is concentrated on the
line

and Gaussian pdf simplifies to

{(z,y) : y = £a},

so the pdf does not exist.
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Conditional distributions of a bivariate Gaussian vector

Let Y ~ N(0,X) be a centered bivariate Gaussian vector. As mentioned above,
there are many ways to factorize ¥ as AAT. One possible choice is®

(0 i)
poy o2\/1—p%)"

Therefore, with Z ~ N»(0,1) we have

X:AZ:( o121 )

po2Zy + o9/ 1 — p2Zs.

Hence, the conditional distribution of X5 given X1 = x is

O
(XQ | Xl = ﬂj‘l) ~ N <p0_12$1,0'§(1 — p2)> .

3Check that AAT = 3.
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Radial representation of a Gaussian vector

Let Z be a standard Gaussian vector: Z ~ N(0,I). Define its length (or
radius) by

R=\/Z}+---+Z].

Theorem 8 (Radial representation of a Gaussian vector).

R? ~ Gamma(%, 3.

U = Z/R ~ Unif(S%1).

U is independent of R.

Hence, Z may be written as Z = RU, where R is an R' random variable
independent of U ~ Unif(S?1).

If X ~ Ng(p,X), then X 4 i+ RAU with any* A such that ¥ = AAT.

4 A always exists, but is not unique
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Elliptically symmetric random vectors

The radial representation of a Gaussian vector motivates the following definition:

Definition 9 (Elliptically symmetric random vector).
A random vector X in R? is called elliptically symmetric if it admits the
representation

X < 4+ RAU,

where u € R, A € R4 R >0 is an R! random variable®, and U ~ Unif(S%1)
is independent of R. This is denoted by X ~ E4(u, A, H), where H is the df of
R. The matrix ¥ = AA" is called the dispersion matrix® of X.

5Not necessarily Gamma(g, %)

5This is not a covariance matrix unless X is Gaussian.
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Examples of elliptical distributions

e Let S > 0 be a random variable independent of V2 ~ Gamma(, ). Define

R = SV. This gives an elliptical random vector X called the (scale)

mixture of a Gaussian random vector.
o If R? = /Y, where Y ~ Gamma(%, 3), then Y is called a multivariate
t-distribution (Student distribution) with a degrees of freedom.
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Exercises/questions

e Calculate Ay j, Ao p,, F' for a bivariate df /' by hand and check that it agrees
with the formula from Lecture 1.

o If (X1, X2, X3) ~ F has pdf f, what is the df of (X1, X2) and does it have a
pdf?

e Describe the distribution N(u,0). If Y ~ N(a,0?), then is (i,Y) a Gaussian
vector?

e Consider Y = RAU, where R = SV, S and V are independent and
V2 ~ Gamma(Z,1). Find the covariance matrix of Y in terms of E {5?} and

272
matrix A.
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