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Leargning objectives

• Introduce the class of discrete mixtures of random vectors

• Discuss the properties of discrete mixtures (pdfs, moments, etc)

• Understand mixture copulas and copulas of mixtures

• Discuss the dfs of random maxima, minima and sum
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Mixtures of dfs

Definition 1.

• Consider a family of d-dimensional dfs Fk : Rd → [0, 1] parametrized by1

k = 1, . . . , n, where n ≤ ∞.

• Let pk be non-negative weights such that
∑n

k=1 pk = 1. In other words, pk
is a pmf on {1, . . . , n}.

• The mixture of dfs Fk with weights pk is a function F : Rd → [0, 1] defined
by

F (x) =

n∑
k=1

pkFk(x), x ∈ Rd.

Exercise. Show that F is a valid df by checking the properties.

1k in the subsctipt does not denote k-th marginal here.
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Examples of mixtures

Example. Laplace mixture:

F (x) =
1

n

n∑
k=1

Fk(x).

Example. Convex sum of two dfs:

F (x) = θF1(x) + (1− θ)F2(x), θ ∈ [0, 1].

Note that for θ ̸∈ [0, 1] the function F defined by this formula is not a df2.

2Why?
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Mixture of survival functions

Similarly to what we did for dfs, we can define the mixture of survival functions
by

F̄ (x) =

n∑
k=1

pkF̄k(x), x ∈ Rd.

Natural question. Is F̄ the survival function of the mixture df F with the same
weights pk?
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Pdfs of mixtures

Theorem 2 (Mixture pdf).

If for each k, Fk has a pdf fk, then the mixture df F has a pdf f given by

f(x) =

n∑
k=1

pkfk(x), x ∈ Rd.

If at least one Fk does not have a pdf, then neither does F (without proof).

Proof. By definition of pdf, we have

Fk(x) =

∫
y≤x

fk(y) dy.

Thus,

F (x) =

n∑
k=1

pk

∫
y≤x

fk(y) dy =

∫
y≤x

n∑
k=1

pkfk(y) dy =

∫
y≤x

f(y) dy.

Alternative proof. Differentiate3

F (x) =

n∑
k=1

pkFk(x)

w.r.t. x using linearity of differentiation.
3Why is this allowed?
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How to simulate from a mixture?

Algorithm. To simulate X ∼ F , where F is a mixture of Fk with weights pk:

(i) Simulate K from the pmf pk, k = 1, . . . , n;

(ii) Simulate X from FK .

Then, X ∼ F .

In other words, first choose k randomly according to pk, then simulate from Fk.

We can write this as

Xk ∼ Fk and K ∼ (pk)k=1,...,n =⇒ XK ∼ F.

Exercise. Use this as an alternative way to prove that mixture sf is the sf of the
mixture df and vice versa.
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Proof that the algorithm works

We only need to show that XK is indeed distributed as F . To this end, we need to
compute the df of XK . By the law of total probability, for any x ∈ Rd,

P {XK ≤ x} =

n∑
k=1

P {XK ≤ x | K = k}P {K = k}

=

n∑
k=1

P {Xk ≤ x} pk

=

n∑
k=1

Fk(x) pk = F (x).
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Mixture of copulas

Let Ck be the copula of Fk, k = 1, . . . , n. The mixture copula C is defined by

C(u) =

n∑
k=1

pkCk(u), u ∈ [0, 1]d.

Question: What do we need to check to show that C is a valid copula?

Answer: Since each Ck is a df, C is a df as well. Hence, we only need to check
that the marginals of C are uniform on [0, 1].

Exercise. Check that the marginals are indeed Unif(0, 1).

8 / 16



Copula of mixture vs. mixture of copulas

Question. Is the copula of the mixture df F equal to the mixture copula C with
the same weights pk?

Answer. Not unless all Fk have the same marginals. This is a very special case
and it’s due to the fact that in his case the marginals4 of F are the same as those
of Fk. Check the exercise sessions for more details.

4Keep track of the indices!
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Copula of mixture vs. mixture of copulas (contd.)

Remark. We can show that if Fk are dfs, then the mixture of their copulas is
the df of

(FK,1(XK,1), . . . , FK,d(XK,d)),

where K ∼ (pk)k=1,...,n and Xk ∼ Fk, whereas the copula of the mixture df is
the df of

EK′
{
(FK′,1(XK,1), . . . , FK′,d(XK,d))

}
,

where K ′ is an independent copy of K.

10 / 16



Moments and mixtures

Theorem 3 (Moments of mixtures are mixtures of moments).

If X ∼ F , where F is a mixture of Fk with weights pk, then for all5 functions
g : Rd → R holds

E {g(X)} =

n∑
k=1

pk E {g(Xk)} .

In particular,

E
{
Xa1

1 · · ·Xad
d

}
=

n∑
k=1

pk E
{
Xa1

k,1 · · ·X
ad
k,d

}
for all a such that the moments exist.

5sufficiently nice
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Proof of the previous theorem

E {g(X)} =

∫
Rd

g(x) dF (x) =

∫
Rd

g(x) d

(
n∑

k=1

pkFk(x)

)

=
n∑

k=1

pk

∫
Rd

g(x) dFk(x) =

n∑
k=1

pk E {g(Xk)} .
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Componentwise maxima

Let Xi, i = 1, . . . , n be iid random vectors with joint df F . Define the
componentwise maxima by

Mi,n = max
j=1,...,n

Xj,i.

Theorem 4 (Df of the componentwise maxima).

The df of Mn = (Mi,n)i=1,...,n is F (x) = Fn(x).

Proof. By definition of Mn and independence,

P {Mn ≤ x} = P {Xj,i ≤ xi, j = 1, . . . , n, i = 1, . . . , d}

=

n∏
j=1

P {Xj,i ≤ xi, i = 1, . . . , d} = Fn(x).
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Random maxima is a mixture

Theorem 5 (Random maxima/minima is a mixture).

If K is a random variable with pmf P {K = k} = pk, k = 1, . . . , n, then the df of
MK = (MK,i)i=1,...,n is the mixture of dfs F k with weights pk.

Similarly, the survival function of the componentwise minima
mK = (mK,i)i=1,...,n, where mk,i = minj=1,...,k Xj,i, is the mixture of survival
functions F̄ k with weights pk.

Exercise. Prove this theorem using the law of total probability.
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Random walk as a mixture

Theorem 6.
Let Xi ∼ F be an iid sequence of random vectors and K be a random variable
with pmf pk. Then the df of the random walk stopped at a random time K

SK =

K∑
i=1

Xi

is the mixture of dfs F ∗k with weights pk, where F ∗k is the k-fold convolution of
F with itself.

Exercise. Prove this theorem using the law of total probability and the fact that

F ∗k(x) = P {Sk ≤ x} .

15 / 16



Questions/exercises

• How can we simulate from F = θH + (1− θ)G if we know how to simulate
from H and G?

• If we want to model F = θH + (1− θ)G, the mixing random variable K is
usually not observed directly. Can we do something about it?
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