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Leargning objectives

• Define max-domains of attraction

• Study the relation between MDAs, marginals and copulas

• Introduce the asymptotic independence property
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Max-DOA of a distribution

Definition 1 (Max-domain of attraction).

A distribution function F is said to belong to the max-domain of attraction
(MDA) of distribution function G, denoted by F ∈ MDA(G), if there exist
sequences of vectors an > 0 and bn ∈ Rd such that

Fn(anx+ bn) −−−→
n→∞

G(x)

for all continuity points x of G. Equivalently, if X1,X2, . . . are i.i.d. random
vectors with distribution function F , then

max1≤i≤nXi − bn
an

d−−−→
n→∞

Z ∼ G.
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Max-DOA and extreme value distributions

Theorem 2.
If F ∈ MDA(G) for some non-degenerate distribution function G, then G is an
extreme value distribution.

Proof sketch. First, we prove that that

amn

an
→ αm > 0 and

bmn − bn
an

→ βm as n → ∞.

Then, we write

Gm(αmx+ βm) = lim
n→∞

Fmn(an(αmx+ βm) + bn)

= lim
n→∞

Fmn(amnx+ bmn + o(1)) = G(x).
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Copula’s MDA

Definition 3.
A copula C is said to belong to the max-domain of attraction of a copula Q,
denoted by C ∈ MDA(Q), if

Cn(u1/n) −−−→
n→∞

Q(u)

for all continuity points u of Q.

Theorem 4.
If C ∈ MDA(Q) for some copula Q, then Q is an extreme value copula.
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MDA in terms of marginals and copula

Theorem 5.
F ∈ MDA(G) ⇐⇒ Fi ∈ MDA(Gi) for all i and CF ∈ MDA(CG).

Proof sketch. First, assume that F ∈ MDA(G). Then, as we’ve already seen,
Fi ∈ MDA(Gi) for all i. Next, we have

Fn
i (an,ix+ bn,i) ≈ Gi(x) =⇒ Fi(x) ≈ G

1/n
i

(
x− bn,i
an,i

)
=⇒ F−1

i (u) ≈ an,iG
−1
i (un) + bn,i

=⇒ F−1
i (u1/n) ≈ an,iG

−1
i (u) + bn,i.

Therefore, denoting F−1(x) = (F−1
1 (x1), . . . , F

−1
d (xd)) we obtain

Cn
F (u

1/n) = Fn(F−1(u1/n)) ≈ Fn(anG
−1(u) + bn) ≈ G(G−1(u)) = CG(u).
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Tail dependence coefficient in terms of copula

Definition 6 (Tail dependence coefficient).

The upper tail dependence coefficient of a bivariate copula C is defined as

λ(C) = lim
u↑1

P {U > u, V > u}
1− u

,

where (U, V ) ∼ C, provided that the limit exists. The copula C is said to be
asymptotically independent if λ(C) = 0.

Theorem 7.
C is asymptotically independent if and only if C ∈ MDA(CI).

Thus, to check whether C ∈ MDA(CI) we only need to compute one number λ(C).
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Independence implies asymptotic independence

Let us check that the interpretation of λ(C) = 0 as some kind of ”independence” is
consistent with the independence itself. That is, let us check that λ(CI) = 0:

λ(CI) = lim
u↑1

P {U > u, V > u}
1− u

= lim
u↑1

(1− u)2

1− u
= 0.

Moreover, if C is any copula such that C̄ ≤ C̄I , then

0 ≤ λ(C) = lim
u↑1

P {U > u, V > u}
1− u

= lim
u↑1

C(u, u)

1− u
≤ lim

u↑1

CI(u, u)

1− u
= 0,

hence λ(C) = 0. For example, the lower copula CL satisfies1 λ(CL) = 0.

1Check this directly.
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Tail dependence coefficient in terms of df

If F is a bivariate df with equal2 marginals F1 = F2 = H, then the tail dependence
coefficient of CF can be expressed in terms of F

λ(CF ) = lim
x↑ω

F (x, x)

H(x)
= lim

x↑ω

P {X1 > x,X2 > x}
P {X1 > x}

,

where ω ≤ ∞ is the upper endpoint of H. Indeed,

lim
x↑ω

F (x, x)

H(x)
= lim

u=F (x)↑1

F (H−1(u), H−1(u))

H(H−1(u))
= lim

u↑1

CF (u, u)

1− u
= λ(CF ).

2What’s different when the marginals are not the same?
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Example: Gaussian df is asymptotically independent
Let X,Y ∼ N(0, 1) be jointly Gaussian with |ρ| < 1. Then, the tail dependence
coefficient of the corresponding copula Cρ is

λ(Cρ) = lim
x→∞

P {X > x, Y > x}
P {X > x}

formula for λ(CF )

≤ lim
x→∞

P {X + Y > 2x}
P {X > x}

X>x

Y >x

}
=⇒ X + Y > 2x

= lim
x→∞

φ(2x/
√
2(1 + ρ))√

2(1 + ρ)φ(x)
l’Hopital’s rule and

dΦ(x)

dx
= −φ(x)

= lim
x→∞

exp
(
− x2

1+ρ + x2

2

)
√
2(1 + ρ)

= 0 because − 1

1 + ρ
+

1

2
< 0

For ρ = −1, Cρ = CL and we already know that λ(CL) = 0.
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Example: elliptical distributions with Gumbel MDA
marginals

Generalizing the previous example, one can show that if (X,Y ) has a bivariate
elliptical distribution with Gumbel MDA marginals (as Gaussian), then X and Y
are asymptotically independent.
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Tail dependence of EVC

Theorem 8.
If CA is an extreme value copula with Pickands dependence function A, then its
tail dependence coefficient is

λ(CA) = 2(1−A(1/2)).

Proof. We have

CA(u, u) = 1− 2u+ CA(u, u) formula for C

= 1− 2u+ u2A(1/2) by CA(u, v) = (uv)A(lnu/ ln(uv))

By l’Hopital’s rule,

λ(CA) = lim
u↑1

CA(u, u)

1− u
= lim

u↑1

−2 + 2A(1/2)uA(1/2)−1

−1
= 2(1−A(1/2)).
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Example: tail dependence of Gumbel copula

Calculating the tail dependence coefficient of the Gumbel copula

Cθ(u, v) = exp

(
−
(
(− lnu)θ + (− ln v)θ

)1/θ
)
,

directly from the definition is challenging. However, since the Gumbel copula is an
EVC with Pickands dependence function

A(t) =
(
tθ + (1− t)θ

)1/θ
,

we can use the previous theorem to obtain

λ(Cθ) = 2 (1−A(1/2)) = 2− 21/θ.
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Questions/exercises

• Let (X,Y ) ∼ Unif(S1). Is (X,Y ) asymptotically independent?

• Let (X,Y ) ∼ Unif({x2 + y2 < 1}). Is (X,Y ) asymptotically independent?

• Why did we need to assume that the marginals are equal when expressing the
tail dependence coefficient in terms of the df? What goes wrong if they aren’t?
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