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Leargning objectives

e Define max-domains of attraction
e Study the relation between MDAs, marginals and copulas

e Introduce the asymptotic independence property
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Max-DOA of a distribution

Definition 1 (Max-domain of attraction).
A distribution function F' is said to belong to the max-domain of attraction
(MDA) of distribution function G, denoted by F' € MDA(G), if there exist
sequences of vectors a,, > 0 and b, € R? such that

n—oo
for all continuity points @ of G. Equivalently, if X1, Xo,... are i.i.d. random
vectors with distribution function F', then

maxi<i<n Xi —bn d

Z ~ G.

a,, n—00
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Max-DOA and extreme value distributions

Theorem 2.
If F € MDA(G) for some non-degenerate distribution function G, then G is an
extreme value distribution.

Proof sketch. First, we prove that that

Amn bmn - b

" 5 B, as n— oo.

— oy, >0 and

an an

Then, we write
G (omx + Bm) = li_)rn F"(an(anx + Bm) + by)

= lim F™(@amn® + by +0(1)) = G(x).

n—00
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Copula’s MDA

Definition 3.
A copula C' is said to belong to the max-domain of attraction of a copula @,
denoted by C' € MDA(Q), if

C™(u!") —— Q(u)

n—oo

for all continuity points uw of Q.

Theorem 4.
If C € MDA(Q) for some copula Q, then Q is an extreme value copula.
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MDA in terms of marginals and copula

Theorem 5.
F € MDA(G) <= F; € MDA(G;) for all i and Cr € MDA(Cq).

Proof sketch. First, assume that ' € MDA(G). Then, as we’ve already seen,
F; € MDA(G;) for all i. Next, we have

Qn i
= F,'(u) = an;G;H(u™) + b
— F L (u™) = an,GH(u) + b
Therefore, denoting F~*(x) = (F; ' (21),...,F; *(z4)) we obtain
Cr(u!/™) = FY(F~(u'/™) = F™(anG ™ (u) + by) ~ G(G™(u)) = Cao(u).
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Tail dependence coefficient in terms of copula

Definition 6 (Tail dependence coefficient).

The upper tail dependence coefficient of a bivariate copula C is defined as

P
AC) = lim {U>u, V>u}
utl 1—u

I

where (U, V) ~ C, provided that the limit exists. The copula C' is said to be
asymptotically independent if A\(C') = 0.

Theorem 7.
C' is asymptotically independent if and only if C € MDA(Cfy).

Thus, to check whether C' € MDA(C7) we only need to compute one number A\(C).
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Independence implies asymptotic independence

Let us check that the interpretation of A(C') = 0 as some kind of ”independence” is
consistent with the independence itself. That is, let us check that A(Cy) = 0:

P 1—u)?
MCp) = lim AT > V>uh o (=0
! 1—wu wl 1—u
Moreover, if C' is any copula such that C' < C7, then
P C Cr
0 < \C) = tim AT >0 Voup o Clww) o Crlww)
utl l1—u utl 1—u utl 1 —wu

hence A\(C') = 0. For example, the lower copula C}, satisfies! A\(Cy) = 0.

!Check this directly.
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Tail dependence coefficient in terms of df

If F is a bivariate df with equal? marginals F; = F, = H, then the tail dependence

coeflicient of C'r can be expressed in terms of F

. F(z,z) . P{Xy >z Xy > 2}
ACF) = lim ———= = lim ,
( F) rtw H({L‘) xtw P{Xl > x}

where w < oo is the upper endpoint of H. Indeed,

im E(z,z) = lim E(H (u), H (u)) = lim
otw H(z)  w=F@t  H(H (u)) utl 1 —u

2What’s different when the marginals are not the same?

Cr(u,u)

= \(CF).
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Example: Gaussian df is asymptotically independent

Let X, Y ~ N(0,1) be jointly Gaussian with |p| < 1. Then, the tail dependence
coefficient of the corresponding copula C), is

MC,) = Tim P{X>zY >z}

oo PIX >} formula for A\(Cr)

. P{X+Y >21} X>z
<
< lim o Y>x} = X+Y >2
2 2(1 @

— lim o2/ (1+p)) I’Hopital’s rule and de(r) = —¢(x)

21+ p) () e

2 2
exp (—L + L) 1 1

— hm 1+P 2 e O because - T + 5 < O

For p = -1, C, = O, and we already know that A\(Cr) = 0.
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Example: elliptical distributions with Gumbel MDA
marginals

Generalizing the previous example, one can show that if (X,Y") has a bivariate
elliptical distribution with Gumbel MDA marginals (as Gaussian), then X and Y
are asymptotically independent.
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Tail dependence of EVC

Theorem 8.
If Cy4 is an extreme value copula with Pickands dependence function A, then its
tail dependence coefficient is

A(Ca) = 2(1 — A(1/2)).

Proof. We have

Caluyu) =1 —2u+ Ca(u,u) formula for C
=1—2u+ u2A(1/2) by CA(U, U) — (UU)A(lnu/ln(uv))
By I'Hopital’s rule,
rol _ A(1/2)—1
A(Ca) = timg EAU8 1) _ gy, T2 RAWDWTITE oy (1)),

wtl 1 —u ufl —1
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Example: tail dependence of Gumbel copula

Calculating the tail dependence coefficient of the Gumbel copula

Cy(u,v) = exp (— ((— Inu)? + (~1In v)9> 1/0) :

directly from the definition is challenging. However, since the Gumbel copula is an
EVC with Pickands dependence function

1/6
A = (0 +a-0°) ",
we can use the previous theorem to obtain

ACp) =2(1— A(1/2)) =2 — 21/,
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Questions/exercises

e Let (X,Y) ~ Unif(Sh). Is (X,Y) asymptotically independent?

o Let (X,Y) ~ Unif({z? + y? < 1}). Is (X,Y) asymptotically independent?

e Why did we need to assume that the marginals are equal when expressing the
tail dependence coefficient in terms of the df? What goes wrong if they aren’t?
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