

Lecture 9. Dependence measures

Enkelejd Hashorva & Pavel Ievlev
Université de Lausanne

17 November, 2025

Learning objectives

- Introduce the popular dependence measures: Pearson's correlation, Kendall's tau and Spearman's rho and discuss their properties
- Introduce the correlation order
- Focus on the dependence measures for Gaussian/elliptical/Archimedean copulas

Pearson's linear correlation

Definition 1 (Pearson's correlation).

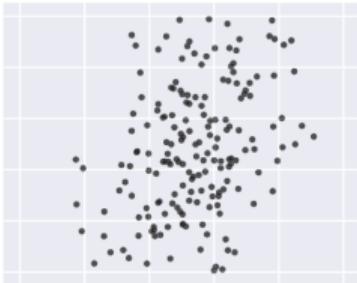
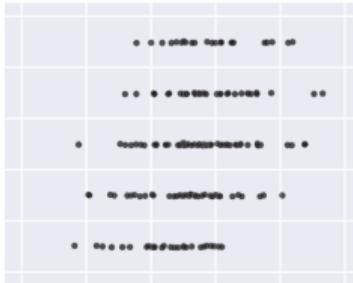
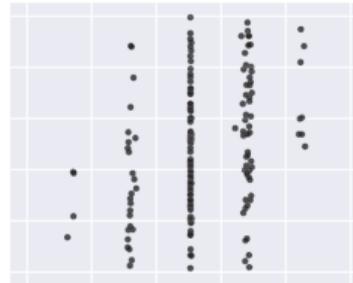
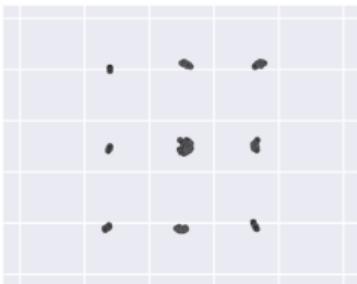
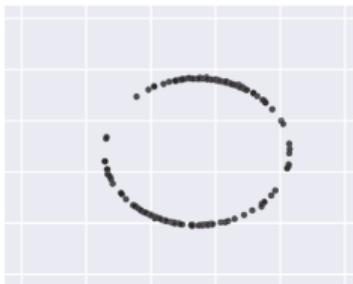
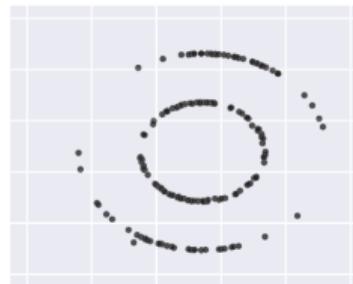
Let X, Y be two random variables with finite and positive variances. The **Pearson's correlation** between X and Y is defined as

$$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}}.$$

Properties:

- $\rho(aX + b, cY + d) = \text{sign}(ac) \rho(X, Y)$
- $\rho(X, Y) \in [-1, 1]$.
- $\rho(X, Y) = 1$ (resp. -1) if and only if there exists a comonotonic (resp. countermonotonic) linear relationship $Y = aX + b$ with $a > 0$ (resp. $a < 0$).
- Pearson's correlation is **not** invariant under strictly increasing transformations of X and Y .

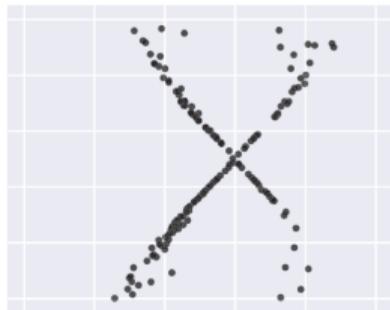
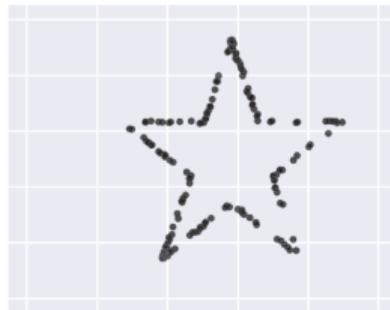
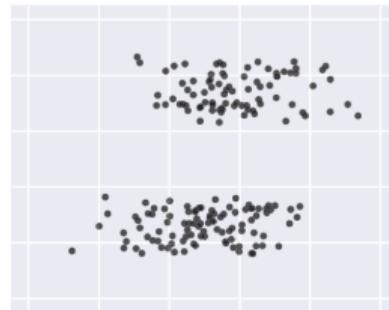
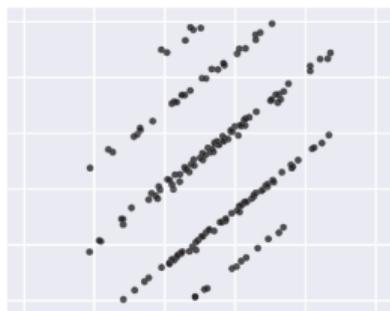
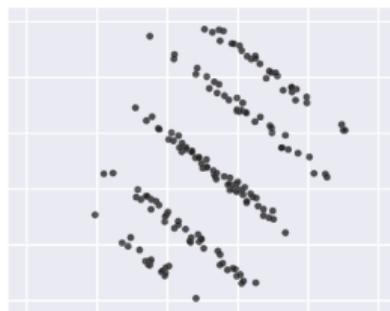
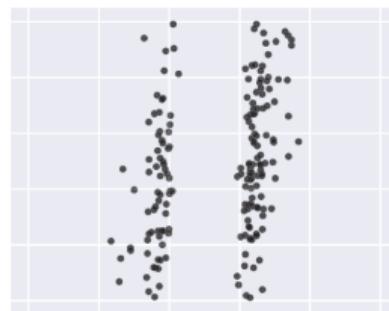
Different data with the same ρ



All datasets¹ have $\bar{x}_n = 54.02$, $\bar{y}_n = 47.83$, $\sigma_x = 14.52$, $\sigma_y = 15.26$, $\rho = 0.32$.

¹See <http://dx.doi.org/10.1145/3025453.3025912> or https://en.wikipedia.org/wiki/Anscombe%27s_quartet.

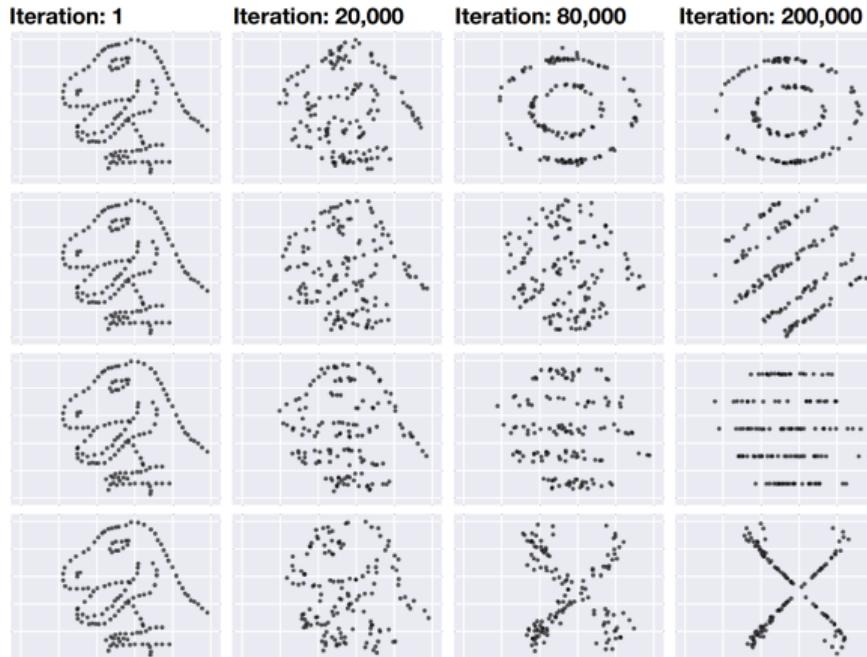
More datasets with the same parameters



All datasets² have $\bar{x}_n = 54.02$, $\bar{y}_n = 47.83$, $\sigma_x = 14.52$, $\sigma_y = 15.26$, $\rho = 0.32$.

²See <http://dx.doi.org/10.1145/3025453.3025912> or https://en.wikipedia.org/wiki/Anscombe%27s_quartet.

Construction from initial dinosaur dataset



See <http://dx.doi.org/10.1145/3025453.3025912>.

Spearman's rank correlation coefficient

Definition 2.

Let (X, Y) be a random vector with continuous marginals F_1, F_2 . The **Spearman's rank correlation coefficient** between X and Y is defined as the Pearson's correlation of their couple:

$$\rho_S(X, Y) = \rho(F_1(X), F_2(Y)).$$

Properties of Spearman's rank correlation

- ρ_S only depends on the copula of (X, Y) .
- Hence, ρ_S inherits invariance properties of the copula:

$$\rho_S(g_1(X), g_2(Y)) = \pm \rho_S(X, Y)$$

with + if g_1, g_2 have the same monotonicity and – otherwise.

- In particular, $\rho_S(aX + b, cY + d) = \text{sign}(ac) \rho_S(X, Y)$.
- Although ρ only makes sense for random variables with finite variances, ρ_S is well-defined for any random variables with continuous marginals.

Equivalent formulas for Spearman's rho

- Let (X', Y') be a random vector independent of (X, Y) , with the **same marginals**, but **independent components**. Define $\Delta_X = X - X'$ and $\Delta_Y = Y - Y'$. Then

$$\rho_S(X, Y) = 3 \mathbb{E}\{\text{sign}(\Delta_X \Delta_Y)\}.$$

- Let (U', V') be two **independent** $\text{Unif}(0, 1)$ random variables. Then

$$\rho_S(X, Y) = 12 \mathbb{E}\{C(U', V')\} - 3 = 12 \int_{[0,1]^2} C(u, v) du dv - 3.$$

- Applying integration by parts formula to the last integral yields

$$\rho_S(X, Y) = 12 \mathbb{E}\{UV\} - 3 \quad \text{where} \quad (U, V) \sim C.$$

Kendall's tau

Definition 3 (Kendall's tau).

Let (X_1, Y_1) and (X_2, Y_2) be two **independent copies** of (X, Y) . Denote the differences by $\Delta_X = X_1 - X_2$ and $\Delta_Y = Y_1 - Y_2$. The **Kendall's tau** between X and Y is defined as

$$\tau(X, Y) = \mathbb{P}\{\Delta_X \Delta_Y > 0\} - \mathbb{P}\{\Delta_X \Delta_Y < 0\}.$$

Two equivalent formulas:

- $\tau(X, Y) = \mathbb{E}\{\text{sign}(\Delta_X \Delta_Y)\}$
- $\tau(X, Y) = 2 \mathbb{P}\{\Delta_X \Delta_Y > 0\} - 1$

Kendall's tau invariance property

Theorem 4.

Let (X, Y) be a random vector with continuous marginals and copula C . Then Kendall's tau is invariant under strictly increasing transformations of X and Y .

Proof: Let g be an increasing function. Then

$$\Delta_X > 0 \iff \Delta_{g(X)} > 0, \quad \Delta_Y > 0 \iff \Delta_{g(Y)} > 0.$$

Hence, for g_1, g_2 increasing we have

$$\tau(X, Y) = \tau(g_1(X), g_2(Y)).$$

Kendall's tau in terms of copula

Theorem 5.

The Kendall's tau of a random vector (X, Y) depends only on its copula C and is given by

$$\tau(X, Y) = 4 \int_{[0,1]^2} C(u, v) dC(u, v) - 1.$$

Proof: By monotone invariance theorem,

$$\tau(X, Y) = \tau(U, V), \quad \text{where} \quad U = F_1(X), \quad V = F_2(Y).$$

Hence, τ only depends on the copula C of (X, Y) . Next,

$$\mathbb{P}\{\Delta_U \Delta_V > 0\} = 2 \mathbb{P}\{U_1 < U_2, V_1 < V_2\} = 2 \int_{[0,1]^2} C(u, v) dC(u, v).$$

It remains to use $\tau(U, V) = 2 \mathbb{P}\{\Delta_U \Delta_V > 0\} - 1$.

Example: Kendall's tau for C_I , C_U and C_L

- If $(U, V) \sim C_I$, then

$$\tau(U, V) = 4 \mathbb{E}\{UV\} - 1 = 4 \cdot \frac{1}{4} - 1 = 0.$$

- If $(U, V) \sim C_U$, then $U = V$ a.s. and thus

$$\tau(U, V) = 4 \mathbb{E}\{\min\{U, V\}\} - 1 = 4 \cdot \frac{1}{2} - 1 = 1.$$

- If $(U, V) \sim C_L$, then $U = 1 - V$ a.s. and thus

$$\begin{aligned}\tau(U, V) &= 4 \mathbb{E}\{(U + V - 1)_+\} - 1 \\ &= 4 \mathbb{E}\{(U + (1 - U) - 1)_+\} - 1 = 4 \cdot 0 - 1 = -1.\end{aligned}$$

Compare Kendall's tau and Spearman's rho

$$\tau(C) = 4 \int_{[0,1]^2} C(u, v) \, dC(u, v) - 1 \quad \text{vs} \quad \rho_S(C) = 12 \int_{[0,1]^2} C(u, v) \, du \, dv - 3.$$

$$\tau(C) = 4 \mathbb{E}\{C(U, V)\} - 1 \quad \text{vs} \quad \rho_S(C) = 12 \mathbb{E}\{C(U', V')\} - 3,$$

Important difference: Note that $\rho_S(C)$ is linear in C whereas $\tau(C)$ is not. Hence,

$$\rho_S(\theta C_1 + (1 - \theta) C_2) = \theta \rho_S(C_1) + (1 - \theta) \rho_S(C_2),$$

whereas $\tau(\theta C_1 + (1 - \theta) C_2)$ is not equal to the corresponding linear combination of $\tau(C_1)$ and $\tau(C_2)$.

τ and ρ_S for elliptical random vectors

Let (X, Y) be an elliptical random vector with correlation parameter ρ . Similarly to the Gaussian case, we can represent (X, Y) as

$$(X, Y) \stackrel{d}{=} R(U_1, \rho U_1 + \sqrt{1 - \rho^2} U_2),$$

where $R > 0$ a.s. is a random radius independent of $(U_1, U_2) \sim \mathbb{S}^1$.

Then, it can be shown that

$$\tau(X, Y) = \frac{2}{\pi} \arcsin(\rho) \quad \text{and} \quad \rho_S(X, Y) = \frac{6}{\pi} \arcsin\left(\frac{\rho}{2}\right).$$

In particular, these formulas are valid if $(X, Y) \sim N_2(\boldsymbol{\mu}, \Sigma)$.

Kendall's tau for Archimedean copulas

The following theorem is given without proof.

Theorem 6.

If ψ is a differentiable Archimedean generator, then $\tau(C_\psi) = 1 + 4 \int_0^1 \frac{\psi(t)}{\psi'(t)} dt$.

Example: $\psi(x) = (-\ln x)^\theta$ is the generator of the Gumbel copula C_θ . Then,

$$\tau(C_\theta) = 1 + 4 \int_0^1 \frac{(-\ln t)^\theta}{-\theta(-\ln t)^{\theta-1} \frac{1}{t}} dt = 1 - \frac{4}{\theta} \int_0^\infty ue^{-u} du = 1 - \frac{4}{\theta}.$$

Correlation order

Definition 7 (Correlation order).

Let $\mathbf{X} \sim F$ and $\mathbf{Y} \sim G$ be two random vectors. We say that \mathbf{X} is smaller than \mathbf{Y} in the **correlation order**, denoted by $\mathbf{X} \preceq_{\text{corr}} \mathbf{Y}$, if

$$F(\mathbf{x}) \leq G(\mathbf{x}) \quad \text{for all } \mathbf{x} \in \mathbb{R}^d.$$

Example: If \mathbf{X} and \mathbf{Y} are bivariate Gaussian random vectors with same marginals and correlations ρ_X and ρ_Y , respectively, then

$$\mathbf{X} \preceq_{\text{corr}} \mathbf{Y} \iff \rho_X \leq \rho_Y.$$

Dependence measures and correlation order

Theorem 8.

Let \mathbf{X} and \mathbf{Y} be two random vectors with continuous marginals. If $\mathbf{X} \preceq_{\text{corr}} \mathbf{Y}$, then

$$\mu(\mathbf{X}) \leq \mu(\mathbf{Y}) \quad \text{for } \mu \in \{\rho_S, \tau\}$$

and with $\mu = \rho$ if ρ exists.

Questions/exercises

- How to estimate Kendall's tau and Spearman's rho from data?
- We know that $\rho \in [-1, 1]$. Check that the same is true for ρ_S and τ .
- Explain why ρ , ρ_S and τ agree in the edge cases:

$$\rho = \pm 1 \iff \rho_S = \pm 1 \iff \tau = \pm 1.$$

- If \mathbf{X} and \mathbf{Y} are bivariate vectors with the same marginals, is it true that

$$\mathbf{X} \preceq_{\text{corr}} \mathbf{Y} \iff \bar{F}_{\mathbf{X}} \leq \bar{F}_{\mathbf{Y}} \quad ?$$