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Definition 1. A matrix is a rectangular array of numbers:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Here m is the number of rows and n is the number of columns. Size of the matrix is a pair
of numbers, written as m × n . The set of m × n matrices is denoted by Mm,n(R) or just
Mm,n .

• A matrix is said to be a column vector if the numer of columns is one: n = 1 .

• A matrix is said to be a row vector if the number of rows is one: m = 1 .

• A matrix is said to be square if m = n . Any non-square matrix is said to be
rectangular.

• A matrix is said to be symmetric if (A)ij = (A)ji .

• A matrix is said to be diagonal if (A)ij = 0 for all i ̸= j .

• Zero matrix is denoted 0 or 0m×n if we want to specify its size. All its elements are
zero.

• Identity matrix is denoted I or In , it is defined by (I)ij = 1 if i = j and (I)ij = 0
otherwise. Note that I is a square matrix.

Definition 2. Matrix addition and multiplication by a scalar is definied componentwise:

(A+B)ij = (A)ij + (B)ij, (λA)ij = λ(A)ij.

Note that the sum of two matrices of different sizes is undefined.

Definition 3. The product of two matrices A ∈ Mm,p and B ∈ Mp,n is a new matrix
AB ∈Mm,n with elements defined by

(AB)ij =

p∑
k=1

(A)ik(B)kj, i = 1, . . . ,m, j = 1, . . . , n.

Note that

• The product AB is only defined if A ∈ Mm,p and B ∈ Mp,n . If the number of
columns in A is different from the number of rows in B , the product is undefined.

• The product AB is not defined componentwise: (AB)ij ̸= (A)ij(B)ij .



• AB = 0 does not imply that A = 0 or B = 0 . The simplest examples are(
0 a
0 0

)(
0 b
0 0

)
=

(
0 0
0 0

)
and

(
1 −1

)(1
1

)
= 1× 1 + (−1)× 1 = 0.

It is said that there are divisors of zero in Mm,n : pairs of non-zero matrices with zero
product.

• Matrix product is non-commutative: AB ̸= BA .

• Due to non-commutativity, many identities such as (x−y)(x+y) = x2−y2 are not valid
in the space of matrices:

(A−B)(A+B) = A2 − AB +BA−B2.

The part in blue is not in general zero. Similarly, the identity (x+ y)2 = x2+2xy+ y2

is not valid:
(A+B)2 = A2 + AB +BA+B2.

The part in blue is not in general equal to 2AB .

Definition 4. The column space of a matrix A is the set

Lc :=

x = α1


a11
a21
...

am1

+ α2


a12
a22
...

am2

+ · · ·+ αn


a1n
a2n
...

amn

 , α1, . . . , αn ∈ R

 .

Note that Lc is a vector space: if x,y ∈ Lc and λ ∈ R , then x+ y ∈ Lc and λx ∈ Lc .

Definition 5. The row space of a matrix A is the set

Lr :=

x = β1

(
a11 a12 . . . a1n

)
+ β2

(
a21 a22 . . . a2n

)
+ · · ·+ βm

(
am1 am2 . . . amn

)
, β1, . . . , βm ∈ R

 .

Note that Lr is also a vector space: if x,y ∈ Lr and λ ∈ R , then x+y ∈ Lr and λx ∈ Lr .

Definition 6. Two vectors x and y are said to be linearly independent if αx + βy = 0
implies α = β = 0 . A collection of vectors xi , i = 1, . . . , n is linearly independent if
α1x1 + · · ·+ αnxn = 0 implies that α1 = · · · = αn = 0 .

• Example: vectors

(
0
1

)
and

(
1
0

)
are linearly independent.

• More generally, vectors

a11
0
0
0
...
0


,



∗
a22
0
0
...
0


,



∗
∗
a33
0
...
0


,



∗
∗
∗
a44
...
0


,



∗
∗
∗
∗
...

amn


are linearly independent if a11, a22, a33, a44, . . . , amn ̸= 0 .



• Counterexample: vectors

(
1
0

)
and

(
3
0

)
are linealy dependent.

Definition 7. Dimension of a vector space L is the maximal number of linearly independent
vectors in this space. It is denoted by dimL .

• The only space with dimL = 0 is L = {0} .

• If L is a subspace of Rn , then dimL ≤ n . For example, any subpsace of a plane has
dimension less or equal than 2 .

The following important theorem is given without proof:

Theorem 1. Dimensions of the column space and of the row space of a matrix are equal.

This theorem justifies the following definition:

Definition 8. Rank of a matrix is the dimension of its column space or the dimension of
its row space:

RankA = dimLr = dimLc.

• Since dimLr ≤ n and dimLc ≤ m , then RankA ≤ min{m,n} . This is important
for doing sanity checks: if you have found the rank of a 2 × 3 matrix to be equal 3 ,
there is a mistake in your arguments because it should be no bigger than 2 !

• It follows from the remark in the definition of linear independence that if A is of the
form

A =



a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·
...

...
... . . .

...
...

...
. . .


,

with some a11, a22, . . . , apn ̸= 0 , then RankA = p because the first p columns are
linearly independent. This statement is an important tool for finding RankA as we
shall see now.

Definition 9. Elementary transformations on rows are the following three operations defined
on a matrix:

• Adding one row to another. For example,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→

a11 + a21 a12 + a22 . . . a1n + a2n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

We denote such transformations by Lj ← Lj + Li , which reads ”replace jth line by
the sum of jth line and the ith line”.



• Multiplying a row by a non-zero constant λ . For example,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→

λa11 λa12 . . . λa1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

This transformation is usually denoted by Li ← λLi .

• Swapping rows. For example,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→


a21 a22 . . . a2n
a11 a12 . . . a1n
...

...
. . .

...
am1 am2 . . . amn

 .

This transformation is usually denoted by Li ↔ Lj .

Definition 10. Elementary operations on columns are defined similarly.

Elementary transformations on rows and columns are important because of the following
easy theorem (try proving it!):

Theorem 2. Elementary operations on rows do not change the row space of a matrix.
Elementary operations on columns do not change the column space of a matrix.

The following corollary immediately follows from the last theorem:

Corollary 1. Elementary transformations do not change rank of a matrix.

This allows us to calculate the rank of a matrix by playing the following game:

Transform a given matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


to the form for which finding the rank is easy:

A′ =



a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·


=⇒ RankA′ = p

by applying elementary transformations. By corollary above, RankA = RankA′ = p .



Remark 1. Mixing row and column elementary transformations is fine as long as as we
are calculating the rank. We will, however, use elementary transformations for several other
things. In these other problems one must not mix these and stick to only one kind of trans-
formations. To avoid confusion from now on we will only use row operations.

If we decide to avoid column operations, it may not be possible to bring a matrix to the form

a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·


.

For example, to transform the following matrix1 0 0
0 0 1
0 0 0


to the said form, we would need to swap columns. Fortunately, finding rank of such matrices
is easy without swapping columns: just note that the highlighted columns 1 0 0

0 0 1
0 0 0


are linearly independent. Since rank is the maximal number of linearly independent columns,
we see that the rank of this matrix is 2 . In other words, to find rank it is sufficient to bring
the matrix to a form

0 · · · 0 a11 ∗ · · · ∗ ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · a22 ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 a33 ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·
... · · · ...

...
... · · · ...

... · · · ...
...

... · · ·


and just count the number of linearly independent columns:

0 · · · 0 a11 ∗ · · · ∗ ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · a22 ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 a33 ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·
... · · · ...

...
... · · · ...

... · · · ...
...

... · · ·

 .


