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Feuille de théorie 1

Définition 1. Une matrice est un tableau rectangulaire de nombres :

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Ici m est le nombre de lignes et n est le nombre de colonnes. La taille de la matrice est
un couple de nombres, noté m× n . L’ensemble des matrices m× n est noté Mm,n(R) ou
simplement Mm,n .

• Une matrice est dite un vecteur colonne si le nombre de colonnes est égal à un : n = 1 .

• Une matrice est dite un vecteur ligne si le nombre de lignes est égal à un : m = 1 .

• Une matrice est dite carrée si m = n . Toute matrice non carrée est dite rectangulaire.

• Une matrice est dite symétrique si (A)ij = (A)ji .

• Une matrice est dite diagonale si (A)ij = 0 pour tout i ̸= j .

• La matrice nulle est notée 0 ou 0m×n si l’on veut préciser sa taille. Tous ses éléments
sont nuls.

• La matrice identité est notée I ou In , elle est définie par (I)ij = 1 si i = j et
(I)ij = 0 sinon. Notez que I est une matrice carrée.

Définition 2. L’addition des matrices et la multiplication par un scalaire sont définies com-
posante par composante :

(A+B)ij = (A)ij + (B)ij, (λA)ij = λ(A)ij.

Notez que la somme de deux matrices de tailles différentes n’est pas définie.

Définition 3. Le produit de deux matrices A ∈Mm,p et B ∈Mp,n est une nouvelle matrice
AB ∈Mm,n dont les éléments sont définis par

(AB)ij =

p∑
k=1

(A)ik(B)kj, i = 1, . . . ,m, j = 1, . . . , n.

Notez que

• Le produit AB n’est défini que si A ∈ Mm,p et B ∈ Mp,n . Si le nombre de colonnes
de A est différent du nombre de lignes de B , le produit n’est pas défini.

• Le produit AB n’est pas défini composante par composante : (AB)ij ̸= (A)ij(B)ij .



• AB = 0 n’implique pas que A = 0 ou B = 0 . Les exemples les plus simples sont(
0 a
0 0

)(
0 b
0 0

)
=

(
0 0
0 0

)
and

(
1 −1

)(1
1

)
= 1× 1 + (−1)× 1 = 0.

• On dit qu’il existe des diviseurs de zéro dans Mm,n : des paires de matrices non nulles
dont le produit est nul.

• Le produit matriciel est non commutatif : AB ̸= BA .

• En raison de la non-commutativité, de nombreuses identités telles que (x−y)(x+y) =
x2 − y2 ne sont pas valides dans l’espace des matrices :

(A−B)(A+B) = A2 − AB +BA−B2.

La partie en bleu n’est en général pas nulle. De même, l’identité (x+y)2 = x2+2xy+y2

n’est pas valide :

(A+B)2 = A2 + AB +BA+B2.

La partie en bleu n’est en général pas égale à 2AB .

Définition 4. L’espace des colonnes d’une matrice A est l’ensemble

Lc :=

x = α1


a11
a21
...

am1

+ α2


a12
a22
...

am2

+ · · ·+ αn


a1n
a2n
...

amn

 , α1, . . . , αn ∈ R

 .

Notez que Lc est un espace vectoriel : si x,y ∈ Lc et λ ∈ R , alors x+y ∈ Lc et λx ∈ Lc .

Définition 5. L’espace des lignes d’une matrice A est l’ensemble

Lr :=

x = β1

(
a11 a12 . . . a1n

)
+ β2

(
a21 a22 . . . a2n

)
+ · · ·+ βm

(
am1 am2 . . . amn

)
, β1, . . . , βm ∈ R

 .

Notez que Lr est aussi un espace vectoriel : si x,y ∈ Lr et λ ∈ R , alors x + y ∈ Lr et
λx ∈ Lr .

Définition 6. Deux vecteurs x et y sont dits linéairement indépendants si αx + βy =
0 implique α = β = 0 . Une collection de vecteurs xi , i = 1, . . . , n est linéairement
indépendante si α1x1 + · · ·+ αnxn = 0 implique que α1 = · · · = αn = 0 .

• Exemple : les vecteurs

(
0
1

)
et

(
1
0

)
sont linéairement indépendants.

• Plus généralement, les vecteurs

a11
0
0
0
...
0


,



∗
a22
0
0
...
0


,



∗
∗
a33
0
...
0


,



∗
∗
∗
a44
...
0


,



∗
∗
∗
∗
...

amn


sont linéairement indépendants si a11, a22, a33, a44, . . . , amn ̸= 0 .



• Contre-exemple : les vecteurs

(
1
0

)
et

(
3
0

)
sont linéairement dépendants.

Définition 7. La dimension d’un espace vectoriel L est le nombre maximal de vecteurs
linéairement indépendants dans cet espace. Elle est notée dimL .

• Le seul espace avec dimL = 0 est L = {0} .

• Si L est un sous-espace de Rn , alors dimL ≤ n . Par exemple, tout sous-espace d’un
plan a une dimension inférieure ou égale à 2 .

Le théorème important suivant est donné sans preuve :

Théorème 1. Les dimensions de l’espace des colonnes et de l’espace des lignes d’une matrice
sont égales.

Ce théorème justifie la définition suivante :

Définition 8. Le rang d’une matrice est la dimension de son espace des colonnes ou la
dimension de son espace des lignes :

RankA = dimLr = dimLc.

• Puisque dimLr ≤ n et dimLc ≤ m , on a donc RankA ≤ min{m,n} . Ceci est
important pour effectuer des vérifications de cohérence : si vous avez trouvé que le
rang d’une matrice 2× 3 est égal à 3 , il y a une erreur dans votre raisonnement, car
il ne devrait pas excéder 2 !

• Il découle de la remarque dans la définition de l’indépendance linéaire que si A est de
la forme

A =



a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·
...

...
... . . .

...
...

...
. . .


,

avec certains a11, a22, . . . , apn ̸= 0 , alors RankA = p car les p premières colonnes sont
linéairement indépendantes. Cette affirmation est un outil important pour déterminer
RankA , comme nous allons le voir maintenant.

Définition 9. Les transformations élémentaires sur les lignes sont les trois opérations suiv-
antes définies sur une matrice :

• Ajouter une ligne à une autre. Par exemple,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→

a11 + a21 a12 + a22 . . . a1n + a2n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Nous notons ces transformations par Lj ← Lj + Li , ce qui se lit ”remplacer la j ème

ligne par la somme de la j ème ligne et de la ième ligne”.



• Multiplier une ligne par une constante non nulle λ . Par exemple,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→

λa11 λa12 . . . λa1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .

Cette transformation est généralement notée Li ← λLi .

• Permuter deux lignes. Par exemple,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 −→


a21 a22 . . . a2n
a11 a12 . . . a1n
...

...
. . .

...
am1 am2 . . . amn

 .

Cette transformation est généralement notée Li ↔ Lj .

Définition 10. Les opérations élémentaires sur les colonnes sont définies de manière simi-
laire.

Les transformations élémentaires sur les lignes et les colonnes sont importantes en raison du
théorème suivant, qui est facile à démontrer (essayez !) :

Théorème 2. Les opérations élémentaires sur les lignes ne changent pas l’espace des lignes
d’une matrice. Les opérations élémentaires sur les colonnes ne changent pas l’espace des
colonnes d’une matrice.

Le corollaire suivant découle immédiatement du dernier théorème :

Corollaire 1. Les transformations élémentaires ne changent pas le rang d’une matrice.

Cela nous permet de calculer le rang d’une matrice en jouant au jeu suivant jeu :

Transformer une matrice donnée

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


dans une forme pour laquelle il est facile de déterminer le rang :

A′ =



a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·


=⇒ RankA′ = p



en appliquant des transformations élémentaires. D’après le corollaire ci-dessus,

RankA = RankA′ = p.

Remarque 1. Mélanger les transformations élémentaires sur les lignes et les colonnes est
acceptable tant que l’on calcule le rang. Cependant, nous utiliserons les transformations
élémentaires pour plusieurs autres applications. Dans ces autres cas, il ne faut pas mélanger
ces transformations et il faut se limiter à un seul type de transformations. Pour éviter toute
confusion, à partir de maintenant, nous n’utiliserons que des opérations sur les lignes.

Si nous décidons d’éviter les opérations sur les colonnes, il se peut qu’il ne soit pas possible
de transformer une matrice en une forme

a11 ∗ ∗ ∗ · · · ∗ ∗ · · ·
0 a22 ∗ ∗ · · · ∗ ∗ · · ·
0 0 a33 ∗ · · · ∗ ∗ · · ·
...

...
...

. . .
...

...
... · · ·

0 0 0 . . . apn ∗ ∗ · · ·
0 0 0 . . . 0 0 0 · · ·
0 0 0 . . . 0 0 0 · · ·


.

Par exemple, pour transformer la matrice suivante1 0 0
0 0 1
0 0 0


en cette forme, il faudrait permuter des colonnes. Heureusement, il est facile de déterminer
le rang de telles matrices sans permuter les colonnes : il suffit de noter que les colonnes
mises en évidence  1 0 0

0 0 1
0 0 0


sont linéairement indépendantes. Puisque le rang est le nombre maximal de colonnes linéairement
indépendantes, nous voyons que le rang de cette matrice est 2 . En d’autres termes, pour
déterminer le rang, il est suffisant de transformer la matrice en une forme

0 · · · 0 a11 ∗ · · · ∗ ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · a22 ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 a33 ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·
... · · · ...

...
... · · · ...

... · · · ...
...

... · · ·


et de simplement compter le nombre de colonnes linéairement indépendantes :

0 · · · 0 a11 ∗ · · · ∗ ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · a22 ∗ · · · ∗ ∗ ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 a33 ∗ · · ·
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · ·
... · · · ...

...
... · · · ...

... · · · ...
...

... · · ·

 .


