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Feuille de théorie 4

Formes linéaires

Definition 1. Soient ay,...,a, € R des nombres. Une forme linéaire associée a (ay,...,a,)
est une fonction f:R"™ — R donnée par

n
flar, .. 2) = mxy + agze + - + Az, = E A Th-
k=1

ai I
: a2 x2 e
Si on note A= | . et x=| . |, alors f peut s’écrire comme
Qp, Tn

f(x)=ATz.

3\ [z
f(xl,l'g) = <4> (mi) = 3ZL’1 + 4%2.

Remark 1. Les vecteurs colonnes = matrices n x 1 sont généralement notés soit x (en
gras) soit ¥ (avec une fleche au-dessus). Les deux notations sont standard. La deuziéme
est plus fréquemment utilisée a la main, alors que la seconde est plus standard dans les
publications.

Par exemple,

Voici une autre définition :
Definition 2. Une forme linéaire f :R™ — R est une fonction qui satisfait
fle+y)=flx)+ [(y)

pour tous x,y € R".

Les deux définitions sont équivalentes :

Theorem 1. Si f(x +vy) = f(x) + f(y) pour tous x,y € R™, alors il existe des nombres
ai,...,a, tels que f(x) =ayzy + -+ apx, .

Le vecteur colonne AT a un nom spécial :

Definition 3. Si f:R" — R est une forme linéaire f(x) = A'x, alors A" est appelé le
gradient de f .

Plus tard, nous introduirons les gradients d’autres fonctions.



Definition 4. Un graphe d’une fonction f:R™ — R est [’ensemble

{(z1,... 20, y) eR"™ 1y = fla1,...,20)} .

Definition 5 (Ligne, plan, hyperplan).

e Une ligne passant par l'origine est le graphe d’une forme linéaire f: R — R.

e Un plan passant par l'origine est le graphe d’une forme linéaire f:R* — R,

e Un hyperplan passant par l'origine est le graphe d’une forme linéaire f:R" — R.

Vérifiez que cela correspond a votre compréhension intuitive de ce que sont une ligne et un
plan en dessinant quelques figures.

Definition 6. Si f(x) = ayz1 + agzs + -+ - + anz, , alors a; est considéré comme la pente
de f dans la direction x; .

Courbes/ensembles de niveau de formes linéaires

Definition 7. L’ensemble de niveau d’une fonction f :R"™ — R avec la valeur ¢ € R est
un ensemble o cette fonction prend la valeur ¢ :

{(x1,...,xn) : flar,...,20) =c}.

Deux remarques :

e Les ensembles de niveau des formes linéaires sont des lignes, des plans ou des hyper-
plans ne passant pas nécessairement par zéro.

e Le gradient est orthogonal a I’ensemble de niveau.

Transformation linéaire

Definition 8. Soit A € M,,,, une matrice. Une transformation linéaire associée a A est
une fonction f:R" — R™ donnée par

f(x) = Ax.

Plus explicitement,



Comme pour les formes linéaires, il existe une autre définition :

Definition 9. Une transformation linéaire est une fonction f:R"™ — R™ qui satisfait

flx+y) = flx)+ f(y)

pour tous x,y € R™.

Et comme pour les formes linéaires, cette définition est équivalente a la premiere :

Theorem 2. Si f(x+vy) = f(x)+ f(y) pour tous x,y € R", alors il existe une matrice
A€ My, telle que f(x) = Ax.

Proof. Puisque f(x +vy)= f(x)+ f(y) pour tous x,y € R", nous avons

flx)=f (Z $j€j> = Z%‘f(ejL

ou e; est le j™ vecteur de la base standard :

0

Par conséquent, la i® composante de y = f(x) est donnée par

Yi = ij(f(ej))z‘ = ZAijxja
j=1 j=1
ou Ay = (f(ej))i- O
Voici quelques remarques :

e Notez la position de m et n : si A € M,,,, alors f(x) = Ax est une fonction
RTL % RWL .

e En d’autres termes, m est la dimension de sortie et n est la dimension d’entrée.

e La définition mystérieuse du produit matriciel vient en fait du fait suivant : si f :
R™ — RP et g : RP toR™ satisfont

fleaty)=f=)+fly) et g@+y)=g()+9y)
pour tous x,y € R"” et tous «’,y’ € RP, alors leur composition
h:R" = R™: h(x) =g(f(x))
satisfait également cette propriété :

h(z +y) = h(z) + h(y)

pour tous x,y € R". Nous savons d’apres le théoreme ci-dessus que h(x) = Cx avec
un certain C', mais est-il possible de trouver C'?



e Si f est représentée par la matrice B (c’est-a-dire f(x) = Bx) et g est représentée
par la matrice A (c’est-a-dire g(x’) = Ax’), alors h est représentée par C' = AB.

e En d’autres termes, le produit des matrices représente la composition des transforma-
tions linéaires.

e Comparer:
AeM,,,, BeM,, = ABc M,,,
[ R" >R ¢g:R' 5 R" = g(f(x)):R" - R™.

Exemples de transformations linéaires

Rotations

Si 6 € [0,27] est un angle, la transformation linéaire ry : R* — R? associée & la matrice Ry

par r9(x) = Ryx , ol
cosf) —siné
Fo = (sin9 cos 0 >
fait pivoter & de 'angle 6 autour de 0.

™

Par exemple, si § = —% , nous avons
. cos (=) —sin(—3%) /2 /3/2
2 \sin (=%) cos(—3) B —/3/2  1/2 .

Dilatation/homothétie /mise a 1’échelle

Si k € R, la transformation linéaire h : R? — R? donnée par

=0 1) (2)

est la dilatation ou homothétie ou mise a 1’échelle par un facteur de k.

e Si |k| > 1, h augmente les tailles
e Si |k| <1, h diminue les tailles
e Si k>0, h conserve les directions

e Si k<0, h inverse les directions



Résolution de systemes linéaires

Etant donné y € R" et A € M,,,, nous voulons résoudre Ax =y pour . Il y a deux
questions naturelles :

e Est-ce possible 7 En d’autres termes, existe-t-il x tel que Ax =y?

e Est-ce que x est unique ? En d’autres termes, est-il possible que Ax = y = Ax’ avec
x£ax?

Remark 2. Dans le cours précédent, nous avons vu que Ax = y peut étre résolu par
x = A 'y, mais seulement si A7 existe. Rappelons que A™' n’a de sens que pour les
matrices carrées. Nous sommes maintenant intéressés a résoudre Ax = y sans supposer
que la matrice est carrée.

Le théoreme suivant donne la réponse (sans preuve) :

Theorem 3.

e Sile rang de A coincide avec la dimension de sortie, ¢’est-a-dire Rank A = m , alors
T existe

o Sile rang de A est inférieur a la dimension de sortie, c’est-a-dire Rank A < m , alors
il existe certains y € R™ tels que ['équation Ax =1y est insoluble

e Sile rang de A coincide avec la dimension d’entrée, c’est-a-dire Rank A = n, alors
la solution est unique (si elle existe ; voir les points précédents)

o Silerang de A est inférieur a la dimension d’entrée, alors la solution n’est pas unique
(si elle existe ; voir les points précédents)

En particulier,

Si le rang de A coincide avec les dimensions d’entrée et de sortie

Rank A =m = n,

la solution existe et est unique.

Voici quelques remarques :

e Il y a trois possibilités soit (1) il y a une solution unique ou (2) il n’y a pas de solution
ou (3) il y a un nombre infini de solutions.

e Exemple du cas (1) :

{$1+ZE2:2
== 1] =29 = 1.
1'1—1'2:0



Exemple du cas (2) :

1+ 30 =1 .
! 2 —> pas de solution
T+ To = 2

Exemple du cas (3) :

1+ a9 =1 .
! > — xy=1—1x1, x5 n'importe quel nombre.
21‘1 + 2I2 =2

Si Rank A < m (rang inférieur a la dimension de sortie), Ax = y peut étre soluble
pour certains ¥y, mais pas pour tous les y.

Si Rank A < n (rang inférieur a la dimension d’entrée), il peut y avoir de nombreuses
solutions et nous voulons généralement décrire toute la famille des solutions.

Résolution de systemes linéaires a I’aide de transformations élémentaires

Afin de résoudre un systeme linéaire

a11T1 + 122 4+ ... + AinTy, = Y1
21Ty + Q2Ty + ...+ QT = Yo
Am1Tm + A2z + ... F+ CpnTn = Ym

nous réécrivons ce systeme d’équations sous forme matricielle

ayy a2 ... Qaip x1 Y1
Q21 A22 ... Q2p X2 Y2
Am1 Am2 ... Qmp T, ym

et utilisons la méme idée que nous avons utilisée pour trouver le rang, le déterminant et
I'inverse : appliquer des transformations élémentaires aux deux cotés de cette équation
(c'est-a~dire & A et a y).

Le but est le méme qu’avec la recherche de 'inverse : transformer la matrice a gauche en la
matrice identité I .

Cependant, cela peut ne pas étre possible si A n’est pas inversible. Si Rank A < m, a un
moment donné, nous rencontrons des lignes nulles :

* % % % *
. X1
: o :
11— 10 0 0 O = yi | 1
Tn



e Sila i'" valeur ¢; n’est pas nulle, aucun choix de & ne produira une solution. Dans
ce cas, nous concluons qu’il n’y a pas de solution.

e Si y; = 0, nous pouvons simplement jeter la ligne nulle et continuer a résoudre le
probleme.

Si, d’autre part, Rank A < n, & un moment donné, nous pouvons rencontrer des colonnes
nulles :

T
* 0 * *
: ;| =
* 0 * *
T
. T
j n

e Sila j™ colonne est nulle, chaque choix de z; € R donne une solution.
e Par conséquent, la solution (si elle existe) n’est pas unique.

Remark 3. En pratique, nous n’avons fréquemment pas besoin de simplifier la matrice
Jusqu’a la fin. Prenons un exemple. St nous avons réduit le systeme a la forme

1 11 T
013 Ty | =
000 T3

O O N

nous voyons immédiatement que le probléme n’a pas de solutions car il y a une valeur non
nulle 2 contre une ligne nulle. Si, d’autre part,

1 11 T
013 Ty | =
000 T3

S O N

alors nous pouvons, sans simplifier davantage la matrice, revenir a la forme ”systéme d’équations”

x4+ 1o + T3 = 2
To + 3333 =6
et le résoudre a la main :
{['2:6—3$3, ZL‘1:2—ZE3—(6—3{E3):—4+21’3,

ou x3 est un nombre quelconque.

Comme nous 'avons fait pour trouver l'inverse, il est utile d’introduire la notation matrice
augmentée pour résoudre les systemes linéaires :

Definition 10. Associons a un systéme d’équations linéaires

a1+ @y + ...+ ATy, = Y1
ao1T2  + QTy + ... + GpT, = Yo

Am1Tm + GmaX2 + ... F+ AQpn®n = Ym



une matrice augmentée (A |y) écrite comme

@11 a2 ... Qip | Y1
Q21 Q22 ... Q2p | Y2
Am1  Am2 .o Omn ym

De méme a ce que nous avons fait pour trouver 'inverse, nous pouvons maintenant résoudre
ce systeme d’équations linéaires en appliquant des transformations élémentaires a la matrice

augmentée (A |y).



