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Formes linéaires

Definition 1. Soient a1, . . . , an ∈ R des nombres. Une forme linéaire associée à (a1, . . . , an)
est une fonction f : Rn → R donnée par

f(x1, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn =
n∑

k=1

akxk.

Si on note A =


a1
a2
...
an

 et x =


x1

x2
...
xn

 , alors f peut s’écrire comme

f(x) = A⊤x.

Par exemple,

f(x1, x2) =

(
3
4

)⊤(
x1

x2

)
= 3x1 + 4x2.

Remark 1. Les vecteurs colonnes = matrices n × 1 sont généralement notés soit x (en
gras) soit x⃗ (avec une flèche au-dessus). Les deux notations sont standard. La deuxième
est plus fréquemment utilisée à la main, alors que la seconde est plus standard dans les
publications.

Voici une autre définition :

Definition 2. Une forme linéaire f : Rn → R est une fonction qui satisfait

f(x+ y) = f(x) + f(y)

pour tous x,y ∈ Rn .

Les deux définitions sont équivalentes :

Theorem 1. Si f(x+ y) = f(x) + f(y) pour tous x,y ∈ Rn , alors il existe des nombres
a1, . . . , an tels que f(x) = a1x1 + · · ·+ anxn .

Le vecteur colonne AT a un nom spécial :

Definition 3. Si f : Rn → R est une forme linéaire f(x) = A⊤x , alors A⊤ est appelé le
gradient de f .

Plus tard, nous introduirons les gradients d’autres fonctions.



Definition 4. Un graphe d’une fonction f : Rn → R est l’ensemble{
(x1, . . . , xn, y) ∈ Rn+1 : y = f(x1, . . . , xn)

}
.

Definition 5 (Ligne, plan, hyperplan).

• Une ligne passant par l’origine est le graphe d’une forme linéaire f : R→ R .

• Un plan passant par l’origine est le graphe d’une forme linéaire f : R2 → R .

• Un hyperplan passant par l’origine est le graphe d’une forme linéaire f : Rn → R .

Vérifiez que cela correspond à votre compréhension intuitive de ce que sont une ligne et un
plan en dessinant quelques figures.

Definition 6. Si f(x) = a1x1 + a2x2 + · · · + anxn , alors ai est considéré comme la pente
de f dans la direction xi .

Courbes/ensembles de niveau de formes linéaires

Definition 7. L’ensemble de niveau d’une fonction f : Rn → R avec la valeur c ∈ R est
un ensemble où cette fonction prend la valeur c :

{(x1, . . . , xn) : f(x1, . . . , xn) = c} .

Deux remarques :

• Les ensembles de niveau des formes linéaires sont des lignes, des plans ou des hyper-
plans ne passant pas nécessairement par zéro.

• Le gradient est orthogonal à l’ensemble de niveau.

Transformation linéaire

Definition 8. Soit A ∈ Mm,n une matrice. Une transformation linéaire associée à A est
une fonction f : Rn → Rm donnée par

f(x) = Ax.

Plus explicitement,

f(x1, . . . , xn) =

y1
...
ym

 ,

où les nombres yi sont donnés par

yi = (Ax)i =
n∑

k=1

aikxk.



Comme pour les formes linéaires, il existe une autre définition :

Definition 9. Une transformation linéaire est une fonction f : Rn → Rm qui satisfait

f(x+ y) = f(x) + f(y)

pour tous x,y ∈ Rn .

Et comme pour les formes linéaires, cette définition est équivalente à la première :

Theorem 2. Si f(x + y) = f(x) + f(y) pour tous x,y ∈ Rn , alors il existe une matrice
A ∈Mm,n telle que f(x) = Ax .

Proof. Puisque f(x+ y) = f(x) + f(y) pour tous x,y ∈ Rn , nous avons

f(x) = f

(
n∑

j=1

xjej

)
=

n∑
j=1

xjf(ej),

où ej est le jth vecteur de la base standard :

ei =


0
...
1 ← i
...
0


Par conséquent, la ith composante de y = f(x) est donnée par

yi =
n∑

j=1

xj(f(ej))i =
n∑

j=1

Aijxj,

où Aij = (f(ej))i .

Voici quelques remarques :

• Notez la position de m et n : si A ∈ Mm,n , alors f(x) = Ax est une fonction
Rn → Rm .

• En d’autres termes, m est la dimension de sortie et n est la dimension d’entrée.

• La définition mystérieuse du produit matriciel vient en fait du fait suivant : si f :
Rn → Rp et g : Rp toRm satisfont

f(x+ y) = f(x) + f(y) et g(x′ + y′) = g(x′) + g(y′)

pour tous x,y ∈ Rn et tous x′,y′ ∈ Rp , alors leur composition

h : Rn → Rm : h(x) = g(f(x))

satisfait également cette propriété :

h(x+ y) = h(x) + h(y)

pour tous x,y ∈ Rn . Nous savons d’après le théorème ci-dessus que h(x) = Cx avec
un certain C , mais est-il possible de trouver C ?



• Si f est représentée par la matrice B (c’est-à-dire f(x) = Bx ) et g est représentée
par la matrice A (c’est-à-dire g(x′) = Ax′ ), alors h est représentée par C = AB .

• En d’autres termes, le produit des matrices représente la composition des transforma-
tions linéaires.

• Comparer:

A ∈Mm,p, B ∈Mp,n =⇒ AB ∈Mm,n

f : Rn → Rp, g : Rp → Rm =⇒ g(f(x)) : Rn → Rm.

Exemples de transformations linéaires

Rotations

Si θ ∈ [0, 2π] est un angle, la transformation linéaire rθ : R2 → R2 associée à la matrice Rθ

par rθ(x) = Rθx , où

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
fait pivoter x de l’angle θ autour de 0 .

Par exemple, si θ = −π
3
, nous avons

R−π/3 =

(
cos
(
−π

3

)
− sin

(
−π

3

)
sin
(
−π

3

)
cos
(
−π

3

) ) =

(
1/2

√
3/2

−
√
3/2 1/2

)
.

Dilatation/homothétie/mise à l’échelle

Si k ∈ R , la transformation linéaire h : R2 → R2 donnée par

h(x) =

(
k 0
0 k

)(
x1

x2

)
est la dilatation ou homothétie ou mise à l’échelle par un facteur de k .

• Si |k| > 1 , h augmente les tailles

• Si |k| < 1 , h diminue les tailles

• Si k > 0 , h conserve les directions

• Si k < 0 , h inverse les directions



Résolution de systèmes linéaires

Étant donné y ∈ Rm et A ∈ Mm,n , nous voulons résoudre Ax = y pour x . Il y a deux
questions naturelles :

• Est-ce possible ? En d’autres termes, existe-t-il x tel que Ax = y ?

• Est-ce que x est unique ? En d’autres termes, est-il possible que Ax = y = Ax′ avec
x ̸= x′ ?

Remark 2. Dans le cours précédent, nous avons vu que Ax = y peut être résolu par
x = A−1y , mais seulement si A−1 existe. Rappelons que A−1 n’a de sens que pour les
matrices carrées. Nous sommes maintenant intéressés à résoudre Ax = y sans supposer
que la matrice est carrée.

Le théorème suivant donne la réponse (sans preuve) :

Theorem 3.

• Si le rang de A cöıncide avec la dimension de sortie, c’est-à-dire RankA = m , alors
x existe

• Si le rang de A est inférieur à la dimension de sortie, c’est-à-dire RankA < m , alors
il existe certains y ∈ Rm tels que l’équation Ax = y est insoluble

• Si le rang de A cöıncide avec la dimension d’entrée, c’est-à-dire RankA = n , alors
la solution est unique (si elle existe ; voir les points précédents)

• Si le rang de A est inférieur à la dimension d’entrée, alors la solution n’est pas unique
(si elle existe ; voir les points précédents)

En particulier,

Si le rang de A cöıncide avec les dimensions d’entrée et de sortie

RankA = m = n,

la solution existe et est unique.

Voici quelques remarques :

• Il y a trois possibilités soit (1) il y a une solution unique ou (2) il n’y a pas de solution
ou (3) il y a un nombre infini de solutions.

• Exemple du cas (1) : {
x1 + x2 = 2

x1 − x2 = 0
=⇒ x1 = x2 = 1.



• Exemple du cas (2) : {
x1 + x2 = 1

x1 + x2 = 2
=⇒ pas de solution

• Exemple du cas (3) :{
x1 + x2 = 1

2x1 + 2x2 = 2
=⇒ x2 = 1− x1, x2 n’importe quel nombre.

• Si RankA < m (rang inférieur à la dimension de sortie), Ax = y peut être soluble
pour certains y , mais pas pour tous les y .

• Si RankA < n (rang inférieur à la dimension d’entrée), il peut y avoir de nombreuses
solutions et nous voulons généralement décrire toute la famille des solutions.

Résolution de systèmes linéaires à l’aide de transformations élémentaires

Afin de résoudre un système linéaire
a11x1 + a12x2 + . . . + a1nxn = y1
a21x2 + a22x2 + . . . + a2nxn = y2
...

...
. . .

...
...

am1xm + am2x2 + . . . + amnxn = ym

nous réécrivons ce système d’équations sous forme matricielle
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1

x2
...
xn

 =


y1
y2
...
ym


et utilisons la même idée que nous avons utilisée pour trouver le rang, le déterminant et
l’inverse : appliquer des transformations élémentaires aux deux côtés de cette équation
(c’est-à-dire à A et à y ).

Le but est le même qu’avec la recherche de l’inverse : transformer la matrice à gauche en la
matrice identité I .

Cependant, cela peut ne pas être possible si A n’est pas inversible. Si RankA < m , à un
moment donné, nous rencontrons des lignes nulles :

∗ ∗ ∗ ∗
...

...
. . .

...
i→ 0 0 0 0

...
...

. . .
...

∗ ∗ . . . ∗



x1

x2
...
xn

 =


∗
...
ỹi ← i
...
∗





• Si la ith valeur ỹi n’est pas nulle, aucun choix de x ne produira une solution. Dans
ce cas, nous concluons qu’il n’y a pas de solution.

• Si ỹi = 0 , nous pouvons simplement jeter la ligne nulle et continuer à résoudre le
problème.

Si, d’autre part, RankA < n , à un moment donné, nous pouvons rencontrer des colonnes
nulles :  ∗ . . . 0 . . . ∗

...
...

... . . .
...

∗ . . . 0 . . . ∗
↑
j



x1
...
xj
...
xn

 =

 ∗...
∗

 .

• Si la jth colonne est nulle, chaque choix de xj ∈ R donne une solution.

• Par conséquent, la solution (si elle existe) n’est pas unique.

Remark 3. En pratique, nous n’avons fréquemment pas besoin de simplifier la matrice
jusqu’à la fin. Prenons un exemple. Si nous avons réduit le système à la forme1 1 1

0 1 3
0 0 0

x1

x2

x3

 =

2
6
2

 ,

nous voyons immédiatement que le problème n’a pas de solutions car il y a une valeur non
nulle 2 contre une ligne nulle. Si, d’autre part,1 1 1

0 1 3
0 0 0

x1

x2

x3

 =

2
6
0

 ,

alors nous pouvons, sans simplifier davantage la matrice, revenir à la forme ”système d’équations”{
x1 + x2 + x3 = 2

x2 + 3x3 = 6

et le résoudre à la main :

x2 = 6− 3x3, x1 = 2− x3 − (6− 3x3) = −4 + 2x3,

où x3 est un nombre quelconque.

Comme nous l’avons fait pour trouver l’inverse, il est utile d’introduire la notation matrice
augmentée pour résoudre les systèmes linéaires :

Definition 10. Associons à un système d’équations linéaires
a11x1 + a12x2 + . . . + a1nxn = y1
a21x2 + a22x2 + . . . + a2nxn = y2
...

...
. . .

...
...

am1xm + am2x2 + . . . + amnxn = ym



une matrice augmentée (A | y) écrite comme
a11 a12 . . . a1n y1
a21 a22 . . . a2n y2
...

...
. . .

...
...

am1 am2 . . . amn ym

 .

De même à ce que nous avons fait pour trouver l’inverse, nous pouvons maintenant résoudre
ce système d’équations linéaires en appliquant des transformations élémentaires à la matrice
augmentée (A | y) .


