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Definition of eigenvalues and eigenvectors

Definition 1. Let A ∈ Mn,n be a square matrix and λ ∈ R a number. We say that a
non-zero vector x ∈ Rn is an eigenvector of A corresponding to the eigenvalue λ if

Ax = λx.

In other words, if A sends x to itself, but stretched by λ .

A few remarks:

• If x is an eigenvector of A and λ is its eigenvalue, then

A2x = λ2x, A3x = λ3x, . . . , Anx = λnx

for all n .

• Compare notion of eigenvector and eigenvalue with scaling (homothetic) linear trans-
formation from previous lecture. The transformation

Sλ(x) =

(
λ 0
0 λ

)(
x1

x2

)
streches every vector by λ , whereas A with eigenvalue λ stretches by λ only some
vectors – its eigenvectors.

• Note that λ is clearly an eigenvalue of

(
λ 0
0 λ

)
, and every vector is its eigenvector.

• If a matrix is proportional to the identity, that is, of the form A = λI , we say that A
is a scalar matrix. Scalar matrices are the only matrices which commute with every
other: AB = BA for all B implies that A = λI for some number λ . We will show
later on that λ is the only eigenvalue of A = λI .

• Note that if λ is an eigenvalue of A and we want to find x such that Ax = λx , then
there are an infinite number of solutions. Why? Because if x is one such solution, then
so is 2x , as well as 3x , 4x , πx , et cetera, because A(2x) = 2Ax = 2λx = λ(2x) .

• Eigenvalues and eigenvectors only make sense for square matrices. Indeed, if A ∈
Mm,n , then Ax ∈ Rm , but Ax = λx ∈ Rn . Hence, m = n .



Finding eigenvalues and eigenvectors

Remark 1. Recall that if Ax = 0 and A is invertible, then A−1Ax = x on one hand and
A−1Ax = A−10 = 0 on the other, so x must be zero.

Theorem 1. λ is an eigenvalue of A if and only if det(A− λI) = 0 .

Proof. ( =⇒ ) If λ is an eigenvalue, then Ax = λx for some non-zero vector x . Hence,

Ax− λx = 0, hence (A− λI)x = 0.

Since A−λI sends a non-zero vector to zero, it cannot be invertible. Hence, det(A−λI) = 0 ,
as claimed.

( ⇐= ) If det(A− λI) = 0 , then A− λI is not invertible. Hence, there exists a non-zero
vector x which it sends to zero:

(A− λI)x = 0.

Hence, Ax = λx , as claimed.

The following theorem is given without proof:

Theorem 2. If A ∈ Mn,n , the function p(λ) = det(A − λI) is a polynomial of degree n .
It is called the characteristic polynomial of matrix A .

An important corollary of this theorem is that eigenvalues always exist:

Corollary 1. Any square matrix A ∈ Mn,n has at least one eigenvalue.

Proof. Eigenvalues of A are the roots of p(λ) . Since p is a polynomial, it has a root
(fundamental theorem of algebra).

Recipe for finding eigenvalues. To find eigenvalues of A ,

• denote an unknown eigenvalue by λ

• subtract λI from A

• calculate the characteristic polynomial p(λ) = det(A− λI)

• set it equal to zero: det(A− λI) = 0

• find solutions of this equation.



Example

A =

(
−1 4
−3 −8

)
=⇒ det(A− λI) = det

(
−1− λ 4
−3 −8− λ

)
= (−1− λ)(−8− λ)− 4 · (−3)

= 8 + 8λ+ λ+ λ2 + 12

= λ2 + 9λ+ 20.

Therefore, we need to solve
λ2 + 9λ+ 20 = 0.

It is clear that there are two solutions:

λ1 = −4 and λ2 = −5.

Finding eigenvectors

To find eigenvectors, we need to first find the eigenvalues. If eigenvalues are known, we can
find corresponding eigenvectors by solving the linear system

(A− λI)x = 0.

To solve this system, use approach developed in the previous lecture.

Example

We have found above that λ1 = −4 and λ2 = −5 are eigenvalues of

(
−1 4
−3 −8

)
. Let us

find the eigenvectors corresponding to λ1 :

A− λ1I = A+ 4I =

(
3 4
−3 −4

)
.

Hence, we need to find x such that(
3 4
−3 −4

)(
x1

x2

)
=

(
0
0

)
.

Adding first line to the second, we obtain(
3 4
0 0

)(
x1

x2

)
=

(
0
0

)
.

We can drop the second line because there is zero against it, hence any x satisfying

3x1 + 4x2 = 0



is an eigenvector. We can parametrize these eigenvectors by x2 :{(
−4x2/3

x2

)
, x2 ∈ R

}
.

We also need to find the eigenvectors corresponding to λ = −5 :

(A− λI)x = 0 ⇐⇒
(

4 4
−3 −3

)(
x1

x2

)
=

(
0
0

)
,

and the set of solutions is given by{(
−x2

x2

)
, x2 ∈ R

}
.

Properties of eigenvalues and eigenvectors

Definition 2. The set of eigenvectors x corresponding to an eigenvalue λ of A is called
the eigenspace.

Proof of this theorem is left as an exercise:

Theorem 3. The eigenspace of A corresponding to λ is a vector space. In other words, if
x,y satisfy Ax = λx and Ay = λy , then (a) x+y also satisfies this: A(x+y) = λ(x+y)
and (b) for any number µ , A(µx) = λ(µx) .

The following theorem is a simple yet deep result:

Theorem 4. Determinant of A is equal to the product of all eigenvalues of A :

detA = λ1 · λ2 · · · · · λn =
n∏

i=1

λi.

Proof. Note that detA = det(A−λI) |λ=0 = p(0) , where p is the characteristic polynomial
of A . By Vieta’s theorem, p(0) is equal to the product of all roots of p for all polynomials
(not just characteristic polynomials of matrices).

Corollary 2. A is invertible if and only if it does not have zero eigenvalues.

Proof. If λi ̸= 0 for all i , then detA =
∏n

i=1 λi ̸= 0 , so the matrix is invertible. On the
other hand, if A is invertible, we have that detA ̸= 0 and by this product representation
there cannot be λi = 0 among eigenvalues of A .

Remark 2. Hence, if A ∈ M2,2 and we somehow know one eigenvalue, we can find the
other using previous theorem. For example, if we are given that λ1 = 1 is an eigenvalue of(
1− a a
b 1− b

)
, we can find the second eigenvalue λ2 by

λ2 = λ1 · λ2 = det

(
1− a a
b 1− b

)
= (1− a)(1− b)− ab = 1− a− b.



Theorem 5. If A is symmetric (A⊤ = A ), then eigenvectors corresponding to different
eigenvalues are orthogonal. In other words, x⊤y = 0 for every x such that Ax = λx , y
such that Ay = µy and λ ̸= µ .

Proof. Since λ ̸= µ , we have λ− µ ̸= 0 , therefore

(λ− µ)x⊤y = λx⊤y − µx⊤y

= λy⊤x− µx⊤y

= y⊤(λx)− x⊤(µy)

= y⊤Ax− x⊤Ay

= x⊤A⊤y − x⊤Ay

= 0,

where the last line follows from A⊤ = A . Hence, x⊤y = 0 .

Remark 3. Eigenvectors may be orthogonal without A = A⊤ .

Remark 4. Two different matrices may have the same characteristic polynomial. For ex-
ample,

A =

(
2 2
1 3

)
and B =

(
1 5
0 4

)
.

Hence, they have the same eigenvalues, but their eigenvectors are different.


