

Theory sheet 5

Definition of eigenvalues and eigenvectors

Definition 1. Let $A \in M_{n,n}$ be a square matrix and $\lambda \in \mathbb{R}$ a number. We say that a non-zero vector $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of A corresponding to the eigenvalue λ if

$$A\mathbf{x} = \lambda\mathbf{x}.$$

In other words, if A sends \mathbf{x} to itself, but stretched by λ .

A few remarks:

- If \mathbf{x} is an eigenvector of A and λ is its eigenvalue, then

$$A^2\mathbf{x} = \lambda^2\mathbf{x}, \quad A^3\mathbf{x} = \lambda^3\mathbf{x}, \quad \dots, \quad A^n\mathbf{x} = \lambda^n\mathbf{x}$$

for all n .

- Compare notion of eigenvector and eigenvalue with scaling (homothetic) linear transformation from previous lecture. The transformation

$$S_\lambda(\mathbf{x}) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

stretches every vector by λ , whereas A with eigenvalue λ stretches by λ only some vectors – its eigenvectors.

- Note that λ is clearly an eigenvalue of $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, and every vector is its eigenvector.
- If a matrix is proportional to the identity, that is, of the form $A = \lambda I$, we say that A is a scalar matrix. Scalar matrices are the only matrices which commute with every other: $AB = BA$ for all B implies that $A = \lambda I$ for some number λ . We will show later on that λ is the only eigenvalue of $A = \lambda I$.
- Note that if λ is an eigenvalue of A and we want to find \mathbf{x} such that $A\mathbf{x} = \lambda\mathbf{x}$, then there are an infinite number of solutions. Why? Because if \mathbf{x} is one such solution, then so is $2\mathbf{x}$, as well as $3\mathbf{x}$, $4\mathbf{x}$, $\pi\mathbf{x}$, et cetera, because $A(2\mathbf{x}) = 2A\mathbf{x} = 2\lambda\mathbf{x} = \lambda(2\mathbf{x})$.
- Eigenvalues and eigenvectors only make sense for square matrices. Indeed, if $A \in M_{m,n}$, then $A\mathbf{x} \in \mathbb{R}^m$, but $A\mathbf{x} = \lambda\mathbf{x} \in \mathbb{R}^n$. Hence, $m = n$.

Finding eigenvalues and eigenvectors

Remark 1. Recall that if $A\mathbf{x} = \mathbf{0}$ and A is invertible, then $A^{-1}A\mathbf{x} = \mathbf{x}$ on one hand and $A^{-1}A\mathbf{x} = A^{-1}\mathbf{0} = \mathbf{0}$ on the other, so \mathbf{x} must be zero.

Theorem 1. λ is an eigenvalue of A if and only if $\det(A - \lambda I) = 0$.

Proof. (\implies) If λ is an eigenvalue, then $A\mathbf{x} = \lambda\mathbf{x}$ for some non-zero vector \mathbf{x} . Hence,

$$A\mathbf{x} - \lambda\mathbf{x} = \mathbf{0}, \quad \text{hence} \quad (A - \lambda I)\mathbf{x} = \mathbf{0}.$$

Since $A - \lambda I$ sends a non-zero vector to zero, it cannot be invertible. Hence, $\det(A - \lambda I) = 0$, as claimed.

(\impliedby) If $\det(A - \lambda I) = 0$, then $A - \lambda I$ is not invertible. Hence, there exists a non-zero vector \mathbf{x} which it sends to zero:

$$(A - \lambda I)\mathbf{x} = \mathbf{0}.$$

Hence, $A\mathbf{x} = \lambda\mathbf{x}$, as claimed. \square

The following theorem is given without proof:

Theorem 2. If $A \in M_{n,n}$, the function $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n . It is called the characteristic polynomial of matrix A .

An important corollary of this theorem is that eigenvalues always exist:

Corollary 1. Any square matrix $A \in M_{n,n}$ has at least one eigenvalue.

Proof. Eigenvalues of A are the roots of $p(\lambda)$. Since p is a polynomial, it has a root (fundamental theorem of algebra). \square

Recipe for finding eigenvalues. To find eigenvalues of A ,

- denote an unknown eigenvalue by λ
- subtract λI from A
- calculate the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$
- set it equal to zero: $\det(A - \lambda I) = 0$
- find solutions of this equation.

Example

$$\begin{aligned} A = \begin{pmatrix} -1 & 4 \\ -3 & -8 \end{pmatrix} \implies \det(A - \lambda I) &= \det \begin{pmatrix} -1 - \lambda & 4 \\ -3 & -8 - \lambda \end{pmatrix} \\ &= (-1 - \lambda)(-8 - \lambda) - 4 \cdot (-3) \\ &= 8 + 8\lambda + \lambda + \lambda^2 + 12 \\ &= \lambda^2 + 9\lambda + 20. \end{aligned}$$

Therefore, we need to solve

$$\lambda^2 + 9\lambda + 20 = 0.$$

It is clear that there are two solutions:

$$\lambda_1 = -4 \quad \text{and} \quad \lambda_2 = -5.$$

Finding eigenvectors

To find eigenvectors, we need to first find the eigenvalues. If eigenvalues are known, we can find corresponding eigenvectors by solving the linear system

$$(A - \lambda I) \mathbf{x} = \mathbf{0}.$$

To solve this system, use approach developed in the previous lecture.

Example

We have found above that $\lambda_1 = -4$ and $\lambda_2 = -5$ are eigenvalues of $\begin{pmatrix} -1 & 4 \\ -3 & -8 \end{pmatrix}$. Let us find the eigenvectors corresponding to λ_1 :

$$A - \lambda_1 I = A + 4I = \begin{pmatrix} 3 & 4 \\ -3 & -4 \end{pmatrix}.$$

Hence, we need to find \mathbf{x} such that

$$\begin{pmatrix} 3 & 4 \\ -3 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Adding first line to the second, we obtain

$$\begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

We can drop the second line because there is zero against it, hence any \mathbf{x} satisfying

$$3x_1 + 4x_2 = 0$$

is an eigenvector. We can parametrize these eigenvectors by x_2 :

$$\left\{ \begin{pmatrix} -4x_2/3 \\ x_2 \end{pmatrix}, \quad x_2 \in \mathbb{R} \right\}.$$

We also need to find the eigenvectors corresponding to $\lambda = -5$:

$$(A - \lambda I) \mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 4 & 4 \\ -3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and the set of solutions is given by

$$\left\{ \begin{pmatrix} -x_2 \\ x_2 \end{pmatrix}, \quad x_2 \in \mathbb{R} \right\}.$$

Properties of eigenvalues and eigenvectors

Definition 2. *The set of eigenvectors \mathbf{x} corresponding to an eigenvalue λ of A is called the eigenspace.*

Proof of this theorem is left as an exercise:

Theorem 3. *The eigenspace of A corresponding to λ is a vector space. In other words, if \mathbf{x}, \mathbf{y} satisfy $A\mathbf{x} = \lambda\mathbf{x}$ and $A\mathbf{y} = \lambda\mathbf{y}$, then (a) $\mathbf{x} + \mathbf{y}$ also satisfies this: $A(\mathbf{x} + \mathbf{y}) = \lambda(\mathbf{x} + \mathbf{y})$ and (b) for any number μ , $A(\mu\mathbf{x}) = \lambda(\mu\mathbf{x})$.*

The following theorem is a simple yet deep result:

Theorem 4. *Determinant of A is equal to the product of all eigenvalues of A :*

$$\det A = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n = \prod_{i=1}^n \lambda_i.$$

Proof. Note that $\det A = \det(A - \lambda I)|_{\lambda=0} = p(0)$, where p is the characteristic polynomial of A . By Vieta's theorem, $p(0)$ is equal to the product of all roots of p for all polynomials (not just characteristic polynomials of matrices). \square

Corollary 2. *A is invertible if and only if it does not have zero eigenvalues.*

Proof. If $\lambda_i \neq 0$ for all i , then $\det A = \prod_{i=1}^n \lambda_i \neq 0$, so the matrix is invertible. On the other hand, if A is invertible, we have that $\det A \neq 0$ and by this product representation there cannot be $\lambda_i = 0$ among eigenvalues of A . \square

Remark 2. *Hence, if $A \in M_{2,2}$ and we somehow know one eigenvalue, we can find the other using previous theorem. For example, if we are given that $\lambda_1 = 1$ is an eigenvalue of $\begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$, we can find the second eigenvalue λ_2 by*

$$\lambda_2 = \lambda_1 \cdot \lambda_2 = \det \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix} = (1-a)(1-b) - ab = 1 - a - b.$$

Theorem 5. If A is symmetric ($A^\top = A$), then eigenvectors corresponding to different eigenvalues are orthogonal. In other words, $\mathbf{x}^\top \mathbf{y} = 0$ for every \mathbf{x} such that $A\mathbf{x} = \lambda\mathbf{x}$, \mathbf{y} such that $A\mathbf{y} = \mu\mathbf{y}$ and $\lambda \neq \mu$.

Proof. Since $\lambda \neq \mu$, we have $\lambda - \mu \neq 0$, therefore

$$\begin{aligned}
(\lambda - \mu) \mathbf{x}^\top \mathbf{y} &= \lambda \mathbf{x}^\top \mathbf{y} - \mu \mathbf{x}^\top \mathbf{y} \\
&= \lambda \mathbf{y}^\top \mathbf{x} - \mu \mathbf{x}^\top \mathbf{y} \\
&= \mathbf{y}^\top (\lambda \mathbf{x}) - \mathbf{x}^\top (\mu \mathbf{y}) \\
&= \mathbf{y}^\top A\mathbf{x} - \mathbf{x}^\top A\mathbf{y} \\
&= \mathbf{x}^\top A^\top \mathbf{y} - \mathbf{x}^\top A\mathbf{y} \\
&= 0,
\end{aligned}$$

where the last line follows from $A^\top = A$. Hence, $\mathbf{x}^\top \mathbf{y} = 0$. \square

Remark 3. Eigenvectors may be orthogonal without $A = A^\top$.

Remark 4. Two different matrices may have the same characteristic polynomial. For example,

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 5 \\ 0 & 4 \end{pmatrix}.$$

Hence, they have the same eigenvalues, but their eigenvectors are different.