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Definition of eigenvalues and eigenvectors

Definition 1. Let A € M, be a square matriz and A\ € R a number. We say that a
non-zero vector x € R™ is an eigenvector of A corresponding to the eigenvalue X\ if

Ax = \x.

In other words, if A sends x to itself, but stretched by .
A few remarks:

e If x is an eigenvector of A and A is its eigenvalue, then
A’x =N, Alz=XNx, ..., Az=\Nzx
for all n.

e Compare notion of eigenvector and eigenvalue with scaling (homothetic) linear trans-
formation from previous lecture. The transformation

s (51) (7)

streches every vector by A\, whereas A with eigenvalue A\ stretches by A\ only some
vectors — its eigenvectors.

e Note that A is clearly an eigenvalue of (6\ ())\) , and every vector is its eigenvector.

e If a matrix is proportional to the identity, that is, of the form A = A[, we say that A
is a scalar matrix. Scalar matrices are the only matrices which commute with every
other: AB = BA for all B implies that A = Al for some number A. We will show
later on that A is the only eigenvalue of A = AI.

e Note that if \ is an eigenvalue of A and we want to find « such that Ax = Ax, then
there are an infinite number of solutions. Why? Because if @ is one such solution, then
sois 2x, as well as 3x, 4o, mx, et cetera, because A(2x) = 2Ax = 2 \x = \(2x) .

e Figenvalues and eigenvectors only make sense for square matrices. Indeed, if A €
M, ., , then Az € R™, but Az = Ax € R". Hence, m =n.




Finding eigenvalues and eigenvectors
Remark 1. Recall that if Az =0 and A is invertible, then A~'Ax = x on one hand and
A7 Az = A710 = 0 on the other, so  must be zero.

Theorem 1. )\ is an eigenvalue of A if and only if det(A— AX)=0.

Proof. (=) If X is an eigenvalue, then Az = Ax for some non-zero vector x. Hence,
Ax — dx =0, hence (A— X))z =0.
Since A—AI sends a non-zero vector to zero, it cannot be invertible. Hence, det(A—AI) =0,

as claimed.

(<) If det(A—AI) =0, then A— AI is not invertible. Hence, there exists a non-zero
vector & which it sends to zero:

(A— M)z =0.

Hence, Ax = \x, as claimed. n

The following theorem is given without proof:

Theorem 2. If A € M,,,, the function p(\) = det(A — AI) is a polynomial of degree n .
It is called the characteristic polynomial of matriz A.

An important corollary of this theorem is that eigenvalues always exist:

Corollary 1. Any square matric A € M,,,, has at least one eigenvalue.

Proof. Eigenvalues of A are the roots of p(A). Since p is a polynomial, it has a root
(fundamental theorem of algebra). O

Recipe for finding eigenvalues. To find eigenvalues of A,

e denote an unknown eigenvalue by A

subtract Al from A

calculate the characteristic polynomial p(\) = det(A — A\I)

set it equal to zero: det(A —AI) =0

find solutions of this equation.




A:<_1 4) — det(A— AI) = det (_1_? _84_A)
=(1=XN)(=8-X)—4-(=-3)
=8+8A+ A+ A +12

= A%+ 9\ + 20.

Therefore, we need to solve
A+ 9\ +20 = 0.

It is clear that there are two solutions:

)\1 =—4 and )\2 = —35.

Finding eigenvectors

To find eigenvectors, we need to first find the eigenvalues. If eigenvalues are known, we can
find corresponding eigenvectors by solving the linear system

(A= M)z =0.

To solve this system, use approach developed in the previous lecture.

Example

We have found above that A\; = —4 and A\ = —5 are eigenvalues of (_3 —48) . Let us

find the eigenvectors corresponding to Ap:

3 4
A=l =A+4l = (_3 _4>.

Hence, we need to find « such that
3 4 T . 0
-3 —4 ) N 0/
Adding first line to the second, we obtain
3 4\ [z _ (O
0 0)\z2) \OJ°
We can drop the second line because there is zero against it, hence any x satisfying

3$1 —|—4$2 =0



is an eigenvector. We can parametrize these eigenvectors by s :

{74, e},

We also need to find the eigenvectors corresponding to A = —5:

s (4 4)(0)-0)

and the set of solutions is given by

Properties of eigenvalues and eigenvectors

Definition 2. The set of eigenvectors x corresponding to an eigenvalue A of A is called
the eigenspace.

Proof of this theorem is left as an exercise:

Theorem 3. The eigenspace of A corresponding to A is a vector space. In other words, if
x,y satisfy Ax = Ax and Ay = \y, then (a) x+y also satisfies this: A(x+y) = Mx+y)
and (b) for any number p, A(ux) = \px) .

The following theorem is a simple yet deep result:

Theorem 4. Determinant of A is equal to the product of all eigenvalues of A :

det A=A - Ag----- An:HAi.

Proof. Note that det A = det(A — AI)|x=0 = p(0), where p is the characteristic polynomial
of A. By Vieta’s theorem, p(0) is equal to the product of all roots of p for all polynomials
(not just characteristic polynomials of matrices). O

Corollary 2. A is invertible if and only if it does not have zero eigenvalues.

Proof. It \; # 0 for all i, then det A = [[}_; A\; # 0, so the matrix is invertible. On the
other hand, if A is invertible, we have that det A # 0 and by this product representation
there cannot be \; = 0 among eigenvalues of A. [

Remark 2. Hence, if A € Mo and we somehow know one eigenvalue, we can find the
other using previous theorem. For example, if we are given that A\y = 1 is an eigenvalue of

(1 ; ¢ 1 i b) , we can find the second eigenvalue Mo by

1—a a

)\2:)\1~)\2:det< b 1—b

):(1_a)(1—b)—ab:1—a—b.



Theorem 5. If A is symmetric (AT = A), then eigenvectors corresponding to different
eigenvalues are orthogonal. In other words, ="'y = 0 for every x such that Ax = \x, y
such that Ay = uy and A\ # .

Proof. Since A\ # p, we have A — p # 0, therefore

A—pa'y=z'y—px'y

=\y'z—px'y
=y (\z) -z (uy)
=y Ae —z' Ay

=z ' Aly—x' Ay
= O’
where the last line follows from A" = A. Hence, 'y =0. m

Remark 3. Eigenvectors may be orthogonal without A = AT .

Remark 4. Two different matrices may have the same characteristic polynomial. For ex-

ample,
2 2 15
A= (1 3> and B = <O 4> .

Hence, they have the same eigenvalues, but their eigenvectors are different.



