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Définition des valeurs propres et vecteurs propres

Définition 1. Soit A ∈ Mn,n une matrice carrée et λ ∈ R un nombre. Nous disons qu’un
vecteur non nul x ∈ Rn est un vecteur propre de A correspondant à la valeur propre λ si

Ax = λx.

En d’autres termes, si A envoie x sur lui-même, mais étiré par λ .

Quelques remarques:

• Si x est un vecteur propre de A et λ est sa valeur propre, alors

A2x = λ2x, A3x = λ3x, . . . , Anx = λnx

pour tout n .

• Comparer la notion de vecteur propre et de valeur propre avec la transformation linéaire
d’échelle (homothétique) de la conférence précédente. La transformation

Sλ(x) =

(
λ 0
0 λ

)(
x1

x2

)
étire chaque vecteur de λ , alors que A avec valeur propre λ étire de λ seulement
certains vecteurs – ses vecteurs propres.

• Notez que λ est clairement une valeur propre de

(
λ 0
0 λ

)
, et chaque vecteur est son

vecteur propre.

• Si une matrice est proportionnelle à l’identité, c’est-à-dire de la forme A = λI , nous
disons que A est une matrice scalaire. Les matrices scalaires sont les seules matrices
qui commutent avec toutes les autres: AB = BA pour tout B implique que A = λI
pour un certain nombre λ . Nous montrerons plus tard que λ est la seule valeur propre
de A = λI .

• Notez que si λ est une valeur propre de A et que nous voulons trouver x tel que
Ax = λx , alors il y a un nombre infini de solutions. Pourquoi? Parce que si x est
une telle solution, alors 2x l’est aussi, ainsi que 3x , 4x , πx , et cetera, parce que
A(2x) = 2Ax = 2λx = λ(2x) .

• Les valeurs propres et les vecteurs propres n’ont de sens que pour les matrices carrées.
En effet, si A ∈ Mm,n , alors Ax ∈ Rm , mais Ax = λx ∈ Rn . Par conséquent,
m = n .



Recherche des valeurs propres et vecteurs propres

Remarque 1. Rappelez-vous que si Ax = 0 et que A est inversible, alors A−1Ax = x
d’une part et A−1Ax = A−10 = 0 d’autre part, donc x doit être nul.

Théorème 1. λ est une valeur propre de A si et seulement si det(A− λI) = 0 .

Proof. ( =⇒ ) Si λ est une valeur propre, alors Ax = λx pour un vecteur non nul x .
Par conséquent,

Ax− λx = 0, hence (A− λI)x = 0.

Puisque A − λI envoie un vecteur non nul à zéro, il ne peut pas être inversible. Par
conséquent, det(A− λI) = 0 , comme revendiqué.

( ⇐= ) Si det(A− λI) = 0 , alors A− λI n’est pas inversible. Par conséquent, il existe un
vecteur non nul x qu’il envoie à zéro:

(A− λI)x = 0.

Par conséquent, Ax = λx , comme revendiqué.

Le théorème suivant est donné sans preuve:

Théorème 2. Si A ∈ Mn,n , la fonction p(λ) = det(A− λI) est un polynôme de degré n .
Il est appelé le polynôme caractéristique de la matrice A .

Un corollaire important de ce théorème est que les valeurs propres existent toujours:

Corollaire 1. Toute matrice carrée A ∈ Mn,n a au moins une valeur propre.

Proof. Les valeurs propres de A sont les racines de p(λ) . Puisque p est un polynôme, il a
une racine (théorème fondamental de l’algèbre).

Recette pour trouver les valeurs propres. Pour trouver les valeurs propres de A ,

• désigner une valeur propre inconnue par λ

• soustraire λI de A

• calculer le polynôme caractéristique p(λ) = det(A− λI)

• le mettre à zéro: det(A− λI) = 0

• trouver les solutions de cette équation.



Exemple

A =

(
−1 4
−3 −8

)
=⇒ det(A− λI) = det

(
−1− λ 4
−3 −8− λ

)
= (−1− λ)(−8− λ)− 4 · (−3)

= 8 + 8λ+ λ+ λ2 + 12

= λ2 + 9λ+ 20.

Therefore, we need to solve
λ2 + 9λ+ 20 = 0.

It is clear that there are two solutions:

λ1 = −4 and λ2 = −5.

Recherche des vecteurs propres

Pour trouver les vecteurs propres, nous devons d’abord trouver les valeurs propres. Si les
valeurs propres sont connues, nous pouvons trouver les vecteurs propres correspondants en
résolvant le système linéaire

(A− λI)x = 0.

Pour résoudre ce système, utilisez l’approche développée dans la conférence précédente.

Exemple

We have found above that λ1 = −4 and λ2 = −5 are eigenvalues of

(
−1 4
−3 −8

)
. Let us

find the eigenvectors corresponding to λ1 :

A− λ1I = A+ 4I =

(
3 4
−3 −4

)
.

Hence, we need to find x such that(
3 4
−3 −4

)(
x1

x2

)
=

(
0
0

)
.

Adding first line to the second, we obtain(
3 4
0 0

)(
x1

x2

)
=

(
0
0

)
.

We can drop the second line because there is zero against it, hence any x satisfying

3x1 + 4x2 = 0



is an eigenvector. We can parametrize these eigenvectors by x2 :{(
−4x2/3

x2

)
, x2 ∈ R

}
.

We also need to find the eigenvectors corresponding to λ = −5 :

(A− λI)x = 0 ⇐⇒
(

4 4
−3 −3

)(
x1

x2

)
=

(
0
0

)
,

and the set of solutions is given by{(
−x2

x2

)
, x2 ∈ R

}
.

Propriétés des valeurs propres et vecteurs propres

Définition 2. L’ensemble des vecteurs propres x correspondant à une valeur propre λ de
A est appelé l’espace propre.

La preuve de ce théorème est laissée en exercice:

Théorème 3. L’espace propre de A correspondant à λ est un espace vectoriel. En d’autres
termes, si x,y satisfont Ax = λx et Ay = λy , alors (a) x + y satisfait également ceci:
A(x+ y) = λ(x+ y) et (b) pour tout nombre µ , A(µx) = λ(µx) .

Le théorème suivant est un résultat simple mais profond:

Théorème 4. Le déterminant de A est égal au produit de toutes les valeurs propres de A :

detA = λ1 · λ2 · · · · · λn =
n∏

i=1

λi.

Proof. Notez que detA = det(A− λI) |λ=0 = p(0) , où p est le polynôme caractéristique de
A . Par le théorème de Vieta, p(0) est égal au produit de toutes les racines de p pour tous
les polynômes (pas seulement les polynômes caractéristiques des matrices).

Corollaire 2. A est inversible si et seulement si elle n’a pas de valeurs propres nulles.

Proof. Si λi ̸= 0 pour tout i , alors detA =
∏n

i=1 λi ̸= 0 , donc la matrice est inversible.
D’autre part, si A est inversible, nous avons que detA ̸= 0 et par cette représentation du
produit, il ne peut pas y avoir λi = 0 parmi les valeurs propres de A .

Remarque 2. Hence, if A ∈ M2,2 and we somehow know one eigenvalue, we can find the
other using previous theorem. For example, if we are given that λ1 = 1 is an eigenvalue of(
1− a a
b 1− b

)
, we can find the second eigenvalue λ2 by

λ2 = λ1 · λ2 = det

(
1− a a
b 1− b

)
= (1− a)(1− b)− ab = 1− a− b.



Théorème 5. Si A est symétrique (A⊤ = A ), alors les vecteurs propres correspondant à
différentes valeurs propres sont orthogonaux. En d’autres termes, x⊤y = 0 pour chaque x
tel que Ax = λx , y tel que Ay = µy et λ ̸= µ .

Proof. Puisque λ ̸= µ , nous avons λ− µ ̸= 0 , par conséquent

(λ− µ)x⊤y = λx⊤y − µx⊤y

= λy⊤x− µx⊤y

= y⊤(λx)− x⊤(µy)

= y⊤Ax− x⊤Ay

= x⊤A⊤y − x⊤Ay

= 0,

où la dernière ligne découle de A⊤ = A . Par conséquent, x⊤y = 0 .

Remarque 3. Les vecteurs propres peuvent être orthogonaux sans A = A⊤ .

Remarque 4. Deux matrices différentes peuvent avoir le même polynôme caractéristique.
Par exemple,

A =

(
2 2
1 3

)
and B =

(
1 5
0 4

)
.

Par conséquent, ils ont les mêmes valeurs propres, mais leurs vecteurs propres sont différents.


