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Definition of a quadratic form

Definition 1. Let A € M,, be square matriz. A quadratic form on R"™ is a function
f:R™ =R of the form

f(CU) = Xn: Qi T2 5.

ij=1
Alternatively, we can write
f(x) =z Az.

For example, if n =2, we have
2 2
f(:Cl, .%'2) = a1’ + Q19712 + A21T2X1 + 225 .
If A is symmetric, we have a9 = as; and the quadratic form can be written as

2 2
f(l’l, $2) = a117y -+ 2@12.]711'2 + A22T5.
A few remarks:

e If A is antisymmetric (AT = —A), then

' Az =z A'x = —a' Ax
and hence " Az = 0 for all . This means that quadratic forms with antisymmetric
matrices are equal to zero.

e Since any matrix can be decomposed into a symmetric and an antisymmetric

CAAT A-AT

A
2 T2

we see that Aa AT A AT A AT
x' Az = acT+Ta: + wT_T.’IZ = a:T+T:B,

because the second term gives zero.

e Hence, we can always assume that A is symmetric. Its antisymmetric part disappears
from the quadratic form anyway!

e From now on we always assume that A = A" .



Graphs of quadratic forms have parabolic or hyperbolic shapes. For example, the graph of

flzy,x0) = 3$% + 290%

is a paraboloid. The graph of this function is shown in the following figure:

f($1, x2)

In the following section we shall describe all possible shapes these graphs can take.

Classification of quadratic forms

Definition 2. A quadratic form f(x) = x' Az is called

e positive definite if f(x) > 0 for all x. In this case the graph is a paraboloid opening
upwards.

e negative definite if f(x) < 0 for all . In in this case the graph is a paraboloid
opening downwards.

e indefinite if f(x) takes both positive and negative values. In this case the graph is a
hyperboloid.

e positive semidefinite if f(x) > 0 (not strictly) for all x.

e negative semidefinite if f(x) <0 for all x.

In these cases, we shall say that f is of positive definite/negative definite/ indefinite /positive
semidefinite/negative semidefinite type.



Positive definite Negative definite Indefinite

The examples shown in these pictures are:

e Positive definite:

flanws) = @i+ 205 = (21 w2) ((1) g) (2> '

Negative definite:

e = st -t (o2 (3 %) (2).

flara) =t s = (o =) (5 0) (32)

Positive semidefinite:

Flonas) = a2 = (01 ) (é 8) (2)

Negative semidefinite:

flon ) = —a2 = (21 ) (‘01 8) (2)

Indefinite:



Case of diagonal matrices
If A is diagonal (a;; =0 for ¢ # j), then the quadratic form can be written as

flx) = i ayT:.
i=1

Hence,

e f is positive definite if a; > 0 for all 7.

e f is negative definite if a; < 0 for all 7.

e f is indefinite if a; > 0 for some i and a; < 0 for some 7.

e f is positive semidefinite if a; > 0 for all ¢ and a; > 0 for at least one 7.

e [ is negative semidefinite if a; <0 for all 7 and a;; < 0 for at least one 7.

Hence, for diagonal matrices it is very easy to check the type of the quadratic form. We shall
see later on that the general case is not much more complicated, but the answer depends on
the eigenvalues of the matrix A instead of its diagonal elements.

Sylvester’s law of inertia

One easy way to check whether the type of a quadratic form f is to rewrite it as sum of
squares with different coefficients:

f(zy,m0) = 3] + 122125 + 525 = 3(21 + 229)* — 75

In this form it is easy to see that f is indefinite, because it contains a positive and a negative
term.

Finding such representation is done by completing the square:

SZL’% + 12131.%‘2
is almost a perfect square. We can add and subtract 1222 to obtain

373 + 12129 + 1205 — 1225 + 525 = 3(zy + 229)* — T3

=3(x1 +2z2)2

If we apply the same procedure to a general quadratic form in R? | we will discover something



interesting:

2 2
f($1, ZEQ) = 41174 + 2&121’1ZE2 + A22Ty

2a a

2 12 22 9

= a11 (xl + ——T1To + — 5
a1 a1

2 2

a12 ajs 2

= a1 (ml + —Slfg) + (a22 — — | Xy
ail a11

2
A22011 — A7y o

2
= au(. ) + —5
a11
@11 12
det <
12  A29
2 2
= (111(. .. ) + Ty
ail

Here we replaced the expression in the first parenthesis by (...)? because it is not important
for determination of the type.

Is the appearance of the determinant a coincidence? No, it is not. In fact, if we repeat the
same calculation for a quadratic form

flx)=x"Az, A< Ms3(R),
we will find that

11 Q12 413

det (an am) det | a2 a2 a9
(...)

Az G2 aiz Q23 ass3
- o
11 det ai; Q2
a2 a2
The coefficients of the squares are the ratios of principal minors of the matrix A. Since
we have just seen that the type of f is determined by signs of these coefficients, we can

conclude that the type of a quadratic form is determined by the signs of the principal minors
of the matrix A. This is the content of the Sylvester’s law of inertia.

flay, g, x5) = an (... )* +

Theorem 1 (Sylvester’s law of inertia). A quadratic form f(x) =z Az is

e positive definite if and only if all principal minors of A are positive:

aip Qa2 Q13

@11 a2
ail > O, det > 07 det a12 Qo2 a93 > 0,
Q12 A2
a13 Q23 Gsz3

e negative definite if and only if all principal minors of A have alternating signs

aix Qa2 a3

a11 Q12
ap; < 0, det (CL a > 07 det 12 QA9 93 < 0,
12 22
13 (23 (33



e indefinite if and only if the signs of the principal minors of A are neither positive, not
alternating.

e positive semidefinite if and only if all principal minors are non-negative, but may be
zero.

This theorem allows us to easily determine the type of a quadratic form by computing the
determinants of the principal minors of the matrix A and checking their signs.

1 2

Example 1. Let A = (2 5

) . The principal minors are

1 2

a;p=1>0, det<2 3

>:1-3—2-2:—1<0.

Hence, the quadratic form f(x1,xs) = 23 + 4dx179 + 323 is negative definite.

Quadratic forms in terms of eigenvalues

We have seen above that the type of a diagonal matrix is determined by the signs of its
diagonal elements. It turns out that the type of a general matrix is determined by the signs
of its eigenvalues. Let us first show this on a 2 x 2 example.

If A€ My, has two distinct eigenvalues A; and Mg, let y; and y, be their corresponding
eigenvectors. Then we can express any vector x in terms of y; and y, as

T =C1Y1 + Yo

with some coefficients ¢; and ¢y . Then we have

x Ax = (cry1 + CQyQ)TA(clw + cyo)
= cly] Ay + Gy; Ays + crey] Ays + cac1y, Ay
Since A is symmetric, its eigenvectors corresponding to different eigenvalues are orthogonal
Y1 Ayo =y, Ayr = 0
(see previous lecture). For the first two terms we have
yiTAyz’ = Aiy:yi = )\i|yi\2, 1=1,2,

where |y|? =y"'y =>_y? >0 is the length or norm of y. Therefore,

mTAa: = Alcﬂyl\Q + >\203|y2|2
and its sign is determined by the signs of A\; and Ay (because everything else is positive).
Hence, in this case we see that the type of the quadratic form is determined by the signs of

its eigenvalues. The same is true for general matrices, which is the content of the following
theorem (also without proof):




Theorem 2. Let A € M, ,(R) be a symmetric matriz. The quadratic form f(x) = x' Az
18

e positive definite if all eigenvalues of A are positive.

e negative definite if all eigenvalues of A are megative.

e indefinite if A has both positive and negative eigenvalues.

e positive semidefinite if all eigenvalues of A are non-negative and at least one is positive.

e negative semidefinite if all eigenvalues of A are non-positive and at least one is nega-
tive.

How to determine the type of a quadratic form?

We have two options:

e Compute the principal minors of the matrix A and check their signs using Sylvester’s
law of inertia.

e Compute the eigenvalues of the matrix A and check their signs using the above theo-
rem.




