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Definition of a quadratic form

Definition 1. Let A ∈ Mn,n be square matrix. A quadratic form on Rn is a function
f : Rn → R of the form

f(x) =
n∑

i,j=1

aijxixj.

Alternatively, we can write
f(x) = x⊤Ax.

For example, if n = 2 , we have

f(x1, x2) = a11x
2
1 + a12x1x2 + a21x2x1 + a22x

2
2.

If A is symmetric, we have a12 = a21 and the quadratic form can be written as

f(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2.

A few remarks:

• If A is antisymmetric (A⊤ = −A ), then

x⊤Ax = x⊤A⊤x = −x⊤Ax

and hence x⊤Ax = 0 for all x . This means that quadratic forms with antisymmetric
matrices are equal to zero.

• Since any matrix can be decomposed into a symmetric and an antisymmetric

A =
A+ A⊤

2
+

A− A⊤

2
,

we see that

x⊤Ax = x⊤A+ A⊤

2
x+ x⊤A− A⊤

2
x = x⊤A+ A⊤

2
x,

because the second term gives zero.

• Hence, we can always assume that A is symmetric. Its antisymmetric part disappears
from the quadratic form anyway!

• From now on we always assume that A = A⊤ .



Graphs of quadratic forms have parabolic or hyperbolic shapes. For example, the graph of

f(x1, x2) = 3x2
1 + 2x2

2

is a paraboloid. The graph of this function is shown in the following figure:
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In the following section we shall describe all possible shapes these graphs can take.

Classification of quadratic forms

Definition 2. A quadratic form f(x) = x⊤Ax is called

• positive definite if f(x) > 0 for all x . In this case the graph is a paraboloid opening
upwards.

• negative definite if f(x) < 0 for all x . In in this case the graph is a paraboloid
opening downwards.

• indefinite if f(x) takes both positive and negative values. In this case the graph is a
hyperboloid.

• positive semidefinite if f(x) ≥ 0 (not strictly) for all x .

• negative semidefinite if f(x) ≤ 0 for all x .

In these cases, we shall say that f is of positive definite/negative definite/ indefinite/positive
semidefinite/negative semidefinite type.
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The examples shown in these pictures are:

• Positive definite:

f(x1, x2) = x2
1 + 2x2

2 =
(
x1 x2

)(1 0
0 2

)(
x1

x2

)
.

• Negative definite:

f(x1, x2) = −x2
1 − 3x2

2 =
(
x1 x2

)(−1 0
0 −3

)(
x1

x2

)
.

• Indefinite:

f(x1, x2) = x2
1 − x2

2 =
(
x1 x2

)(1 0
0 −1

)(
x1

x2

)
.

• Positive semidefinite:

f(x1, x2) = x2
1 =

(
x1 x2

)(1 0
0 0

)(
x1

x2

)
.

• Negative semidefinite:

f(x1, x2) = −x2
1 =

(
x1 x2

)(−1 0
0 0

)(
x1

x2

)
.



Case of diagonal matrices

If A is diagonal ( aij = 0 for i ̸= j ), then the quadratic form can be written as

f(x) =
n∑

i=1

aiix
2
i .

Hence,

• f is positive definite if aii > 0 for all i .

• f is negative definite if aii < 0 for all i .

• f is indefinite if aii > 0 for some i and aii < 0 for some i .

• f is positive semidefinite if aii ≥ 0 for all i and aii > 0 for at least one i .

• f is negative semidefinite if aii ≤ 0 for all i and aii < 0 for at least one i .

Hence, for diagonal matrices it is very easy to check the type of the quadratic form. We shall
see later on that the general case is not much more complicated, but the answer depends on
the eigenvalues of the matrix A instead of its diagonal elements.

Sylvester’s law of inertia

One easy way to check whether the type of a quadratic form f is to rewrite it as sum of
squares with different coefficients:

f(x1, x2) = 3x2
1 + 12x1x2 + 5x2

2 = 3(x1 + 2x2)
2 − 7x2

2.

In this form it is easy to see that f is indefinite, because it contains a positive and a negative
term.

Finding such representation is done by completing the square:

3x2
1 + 12x1x2

is almost a perfect square. We can add and subtract 12x2
2 to obtain

3x2
1 + 12x1x2 + 12x2

2︸ ︷︷ ︸
=3(x1+2x2)2

−12x2
2 + 5x2

2 = 3(x1 + 2x2)
2 − 7x2

2.

If we apply the same procedure to a general quadratic form in R2 , we will discover something



interesting:

f(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2

= a11

(
x2
1 +

2a12
a11

x1x2 +
a22
a11

x2
2

)

= a11

(
x1 +

a12
a11

x2

)2

+

(
a22 −

a212
a11

)
x2
2

= a11(. . . )
2 +

a22a11 − a212
a11

x2
2

= a11(. . . )
2 +

det

(
a11 a12
a12 a22

)
a11

x2
2

Here we replaced the expression in the first parenthesis by (. . . )2 because it is not important
for determination of the type.

Is the appearance of the determinant a coincidence? No, it is not. In fact, if we repeat the
same calculation for a quadratic form

f(x) = x⊤Ax, A ∈ M3,3(R),

we will find that

f(x1, x2, x3) = a11(. . . )
2 +

det

(
a11 a12
a12 a22

)
a11

(. . . )2 +

det

a11 a12 a13
a12 a22 a23
a13 a23 a33


det

(
a11 a12
a12 a22

) (. . . )2.

The coefficients of the squares are the ratios of principal minors of the matrix A . Since
we have just seen that the type of f is determined by signs of these coefficients, we can
conclude that the type of a quadratic form is determined by the signs of the principal minors
of the matrix A . This is the content of the Sylvester’s law of inertia.

Theorem 1 (Sylvester’s law of inertia). A quadratic form f(x) = x⊤Ax is

• positive definite if and only if all principal minors of A are positive:

a11 > 0, det

(
a11 a12
a12 a22

)
> 0, det

a11 a12 a13
a12 a22 a23
a13 a23 a33

 > 0, . . .

• negative definite if and only if all principal minors of A have alternating signs

a11 < 0, det

(
a11 a12
a12 a22

)
> 0, det

a11 a12 a13
a12 a22 a23
a13 a23 a33

 < 0, . . .



• indefinite if and only if the signs of the principal minors of A are neither positive, not
alternating.

• positive semidefinite if and only if all principal minors are non-negative, but may be
zero.

This theorem allows us to easily determine the type of a quadratic form by computing the
determinants of the principal minors of the matrix A and checking their signs.

Example 1. Let A =

(
1 2
2 3

)
. The principal minors are

a11 = 1 > 0, det

(
1 2
2 3

)
= 1 · 3− 2 · 2 = −1 < 0.

Hence, the quadratic form f(x1, x2) = x2
1 + 4x1x2 + 3x2

2 is negative definite.

Quadratic forms in terms of eigenvalues

We have seen above that the type of a diagonal matrix is determined by the signs of its
diagonal elements. It turns out that the type of a general matrix is determined by the signs
of its eigenvalues. Let us first show this on a 2× 2 example.

If A ∈ M2,2 has two distinct eigenvalues λ1 and λ2 , let y1 and y2 be their corresponding
eigenvectors. Then we can express any vector x in terms of y1 and y2 as

x = c1y1 + c2y2

with some coefficients c1 and c2 . Then we have

x⊤Ax = (c1y1 + c2y2)
⊤A(c1y1 + c2y2)

= c21y
⊤
1 Ay1 + c22y

⊤
2 Ay2 + c1c2y

⊤
1 Ay2 + c2c1y

⊤
2 Ay1.

Since A is symmetric, its eigenvectors corresponding to different eigenvalues are orthogonal

y⊤
1 Ay2 = y⊤

2 Ay1 = 0

(see previous lecture). For the first two terms we have

y⊤
i Ayi = λiy

⊤
i yi = λi|yi|2, i = 1, 2,

where |y|2 = y⊤y =
∑

y2i ≥ 0 is the length or norm of y . Therefore,

x⊤Ax = λ1c
2
1|y1|2 + λ2c

2
2|y2|2

and its sign is determined by the signs of λ1 and λ2 (because everything else is positive).

Hence, in this case we see that the type of the quadratic form is determined by the signs of
its eigenvalues. The same is true for general matrices, which is the content of the following
theorem (also without proof):



Theorem 2. Let A ∈ Mn,n(R) be a symmetric matrix. The quadratic form f(x) = x⊤Ax
is

• positive definite if all eigenvalues of A are positive.

• negative definite if all eigenvalues of A are negative.

• indefinite if A has both positive and negative eigenvalues.

• positive semidefinite if all eigenvalues of A are non-negative and at least one is positive.

• negative semidefinite if all eigenvalues of A are non-positive and at least one is nega-
tive.

How to determine the type of a quadratic form?

We have two options:

• Compute the principal minors of the matrix A and check their signs using Sylvester’s
law of inertia.

• Compute the eigenvalues of the matrix A and check their signs using the above theo-
rem.


