

Theory sheet 9

Function of many variables

Functions taking \mathbb{R}^n to \mathbb{R} (vectors to numbers) are called *functions of many variables*. Notation:

$$f : \mathbb{R}^n \rightarrow \mathbb{R} : (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n).$$

Instead of $f(x_1, \dots, x_n)$ we also write $f(\mathbf{x})$. For example, functions of two variables $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ assign a number (output) to each a point on a plane (input).

Some functions are only defined on some domain $D \subset \mathbb{R}^n$. In this case we write

$$f : D \rightarrow \mathbb{R}.$$

We have already seen two examples in this class:

- Linear forms $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x}$, where $\mathbf{a} \in M_{n,1}$ is a column vector.
- Quadratic forms $f(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x}$, where $A \in M_{n,n}$ is a symmetric square matrix.

Here's an example from economics: the so-called Cobb-Douglas function $f(K, L)$ takes two positive numbers K (capital) and L (labour) as inputs and outputs the total production:

$$f(K, L) = cK^a L^b,$$

where c, a, b are some parameters.

A simple generalization of the notion of quadratic form is the quadratic function:

$$f : \mathbb{R}^n \rightarrow \mathbb{R} : f(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x} + \mathbf{b}^\top \mathbf{x} + c,$$

where $A \in M_{n,n}$, $\mathbf{b} \in M_{n,1}$ and $c \in \mathbb{R}$.

As we discussed before, a function may be represented by its graph. Here's a reminder of its definition:

$$\text{Graph}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^{n+1} : y = f(\mathbf{x})\}.$$

Drawing graphs is fine in $n = 1$ and $n = 2$, but as n increases graphs become less helpful.

A very important concept associated with functions $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is their level sets, which we have also discussed before. Recall that if $c \in \mathbb{R}$ is some given level, the corresponding level set is the set of points where f assumes this value:

$$\{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = c\}.$$

Recall the level sets (of height function) on topographic maps!

Partial derivatives

Definition 1. Partial derivative of $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with respect to x_j , j fixed is the following limit:

$$\frac{\partial f}{\partial x_j} := \lim_{\Delta \rightarrow 0} \frac{f(x_1, \dots, \textcolor{blue}{x_j} + \Delta, \dots, x_n) - f(x_1, \dots, \textcolor{blue}{x_j}, \dots, x_n)}{\Delta}$$

(provided that it exists). Alternative notation: f'_{x_j} .

In other words, it's just the derivative with respect to x_j with other variables fixed.

Interpretation: the precise definition has $\lim_{\Delta \rightarrow 0}$, but we can use $f'_{x_j}(\mathbf{x})$ to approximate f at shifted point if Δ is small:

$$\begin{aligned} f'_{x_j}(\mathbf{x}) &\approx \frac{f(x_1, \dots, \textcolor{blue}{x_j} + \Delta, \dots, x_n) - f(x_1, \dots, \textcolor{blue}{x_j}, \dots, x_n)}{\Delta} \\ &\implies f(x_1, \dots, \textcolor{blue}{x_j} + \Delta, \dots, x_n) \approx f(\mathbf{x}) + f'_{x_j}(\mathbf{x}) \Delta. \end{aligned}$$

Depending on the function and smallness of Δ , this approximation may be accurate or not. If Δ is not small, this approximation does not make any sense!

Interpretation 2: $f'_{x_j}(\mathbf{x})$ is the slope of f at point \mathbf{x} in the direction of x_j .

Example

Let

$$f(x_1, x_2) = 2x_1^2 x_2^4 - 5x_1 x_2^3 + 16.$$

Then

$$f'_{x_1}(x_1, x_2) = 4x_1 x_2^4 - 5x_2^3, \quad f'_{x_2}(x_1, x_2) = 8x_1^2 x_2^3 - 15x_1 x_2^2.$$

Let us find the value of these derivatives at $(1, 2)$:

$$f'_{x_1}(1, 2) = 64 - 40 = 24, \quad f'_{x_2}(1, 2) = 64 - 60 = 4.$$

Since both numbers are positive, the function f increases in both variables at $(1, 2)$. This also gives us an approximation of $f(1 + \Delta, 2)$ and $f(1, 2 + \Delta)$ for small Δ :

$$\begin{aligned} f(1 + \Delta, 2) &\approx f(1, 2) + f'_{x_1}(1, 2) \Delta = f(1, 2) + 24 \Delta, \\ f(1, 2 + \Delta) &\approx f(1, 2) + f'_{x_2}(1, 2) \Delta = f(1, 2) + 4 \Delta. \end{aligned}$$

Elasticity

Definition 2. Elasticity of $y = f(\mathbf{x})$ with respect to x_j is the following limit:

$$E_{x_j}(y) = \lim_{\Delta \rightarrow 0} \frac{\Delta y}{y} \Big/ \frac{\Delta x_j}{x_j},$$

where $\Delta y = f(x_1, \dots, x_j + \Delta, \dots, x_n) - f(x_1, \dots, x_j, \dots, x_n)$ and $\Delta x_j = (x_j + \Delta) - x_j = \Delta$.

Elasticity $E_{x_j}(y)$ may be expressed in terms of the partial derivative as follows:

$$E_{x_j}(y) = \frac{x_j}{y} \lim_{\Delta \rightarrow \infty} \frac{\Delta y}{\Delta} = \frac{x_j}{y} \frac{\partial y}{\partial x_j}.$$

Example: $y = f(x_1, x_2) = x_1 x_2 e^{x_1+x_2}$, then

$$\frac{\partial y}{\partial x_1} = x_2 e^{x_1+x_2} + x_1 x_2 e^{x_1+x_2} = x_2(1 + x_1)e^{x_1+x_2}.$$

Hence,

$$E_{x_1}(y) = \frac{x_1}{y} \frac{\partial y}{\partial x_1} = \frac{x_1}{x_1 x_2 e^{x_1+x_2}} \cdot x_2(1 + x_1)e^{x_1+x_2} = 1 + x_1.$$

Remark 1. We could have arrived at the same solution easier if we noticed that

$$\frac{1}{y} \frac{\partial y}{\partial x_1} = \frac{\partial}{\partial x_1} \ln y.$$

This is easier because \ln takes product into sum:

$$\ln y = \ln x_1 + \ln x_2 + x_1 + x_2 \implies \frac{\partial}{\partial x_1} \ln y = \frac{1}{x_1} + 1.$$

It remains to multiply by x_1 :

$$E_{x_1}(y) = x_1 \frac{\partial}{\partial x_1} \ln y = x_1 \left(\frac{1}{x_1} + 1 \right) = 1 + x_1.$$

This trick is known as the logarithmic derivative and it is frequently useful for differentiating functions defined as products of simpler terms.

Another example: Cobb-Douglas function with $b = 1 - a$

$$\begin{aligned} Q = cK^a L^{1-a} &\implies E_K(Q) = K \frac{\partial}{\partial K} \ln Q \\ &= K \frac{\partial}{\partial K} (\ln c + a \ln K + (1-a) \ln L) \\ &= K \cdot a \cdot \frac{1}{K} = a. \end{aligned}$$

and similarly

$$\begin{aligned} E_L(Q) &= L \frac{\partial}{\partial L} \ln Q \\ &= L \frac{\partial}{\partial L} (\ln c + a \ln K + (1-a) \ln L) \\ &= L \cdot (1-a) \cdot \frac{1}{L} = 1-a. \end{aligned}$$

Total differential

Definition 3. *Total differential or first order differential of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is the following formal object:*

$$df(\mathbf{x}) = \sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j.$$

You should think about df as a function of \mathbf{x} and of formal increments dx_j , $j = 1, \dots, n$. Here dx_j is a formal variable, instead of which we plug some specific Δx_j to compute the approximation

$$\Delta f(\mathbf{x}) \approx \sum_{j=1}^n \frac{\partial f}{\partial x_j} \Delta x_j.$$

Then $f(\mathbf{x} + \Delta) \approx f(\mathbf{x}) + \Delta f(\mathbf{x})$.

For example, if $f(x_1, x_2) = 2x_1^2 x_2^4 - 5x_1 x_2^3 + 16$, then

$$df(\mathbf{x}) = (4x_1 x_2^4 - 5x_2^3) dx + (8x_1^2 x_2^3 - 15x_1 x_2^2) dy.$$

Taking $\Delta x_1 = 0.02$ and $\Delta x_2 = 0.03$ at $(1, 2)$, we obtain

$$\Delta f(1, 2) = 24 \cdot \Delta x_1 + 4 \cdot \Delta x_2 = 24 \cdot 0.02 + 4 \cdot 0.03 = 0.6.$$

Gradient

Definition 4. *The gradient of $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is the column vector of partial derivatives:*

$$\text{grad } f(\mathbf{x}) = \begin{pmatrix} f'_{x_1} \\ f'_{x_2} \\ \vdots \\ f'_{x_n} \end{pmatrix}.$$

We can rewrite the total differential as

$$df(\mathbf{x}) = (\text{grad } f(\mathbf{x}))^\top d\mathbf{x}.$$

Note that if $\text{grad } f(\mathbf{x})$ is orthogonal to a given increment vector $\Delta \mathbf{x}$, then

$$\Delta f(\mathbf{x}) \approx (\text{grad } f(\mathbf{x}))^\top \Delta \mathbf{x} = 0.$$

This means that f changes slower than linearly in the direction of Δ .

Remark 2. *Gradient is always orthogonal to the level sets. We have discussed this before with linear forms!*

Higher partial derivatives

Similarly to how we defined f'_{x_j} , we can define partial derivatives of second order derivatives:

$$f''_{x_j, x_i}(\mathbf{x}) := \frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_j}(\mathbf{x}).$$

Do we need to keep track of the order in which we compute them? Luckily, no. For *nice* functions partial derivatives commute:

$$f''_{x_j, x_i}(\mathbf{x}) = f''_{x_i, x_j}(\mathbf{x})$$

or in other notation

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

We can now go further and define higher order derivatives in the same way:

$$\frac{\partial^k f}{\partial x_1 \partial x_2 \dots \partial x_k}.$$

Example: if $f(x_1, x_2) = 2x_1^2 x_2^4 - 5x_1 x_2^3 + 16$, then

$$f''_{x_1, x_1} = 4x_2^4, \quad f''_{x_1, x_2} = 16x_1 x_2^3 - 15x_2^2, \quad f''_{x_2, x_2} = 24x_1^2 x_2^2 - 30x_1 x_2, \quad f'''_{x_1, x_1, x_2} = 16x_2^3, \dots$$