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Function of many variables

Functions taking R™ to R (vectors to numbers) are called functions of many variables.

Notation:
R =R (21,...,2,) = f(T1,...,2,).

Instead of f(xq,...,x,) we also write f(x). For example, functions of two variables f :
R? — R assign a number (output) to each a point on a plane (input).

Some functions are only defined on some domain D C R"™. In this case we write

f:D—=R

We have already seen two examples in this class:

T

e Linear forms f(x) =a'x, where a € M, is a column vector.

e Quadratic forms f(x) = x" Az, where A € M,,,, is a symmetric square matrix.

Here’s an example from economics: the so-called Cobb-Douglas function f(K, L) takes two
positive numbers K (capital) and L (labour) as inputs and outputs the total production:

f(K,L)=cK"L,

where ¢, a,b are some parameters.

A simple generalization of the notion of quadratic form is the quadratic function:

fR"sR: flx)=x"Ax +b'x +c,
where A€ M, ,, be M,; and ce R.

As we discussed before, a function may be represented by its graph. Here’s a reminder of its
definition:

Graph(f) = {(z,y) e R : y = f(=)}.

Drawing graphs is fine in n =1 and n = 2, but as n increases graphs become less helpful.

A very important concept associated with functions f : R” — R is their level sets, which
we have also discussed before. Recall that if ¢ € R is some given level, the corresponding
level set is the set of points where f assumes this value:

{z eR": f(x) = c}.

Recall the level sets (of height function) on topographic maps!



Partial derivatives

Definition 1. Partial derivative of f : R™ — R with respect to x;, j fized is the following
limat:

9T i flay, .oz + A x,) — f(or, .z, 2)
5’xj‘ A—0 A

(provided that it exists). Alternative notation: f; .

In other words, it’s just the derivative with respect to x; with other variables fixed.

Interpretation: the precise definition has lima_,q, but we can use f;j (x) to approximate f
at shifted point if A is small:

fég(w)% f<x17'”’xj+A7”"mnA)_f<x17'-'7'rj7"-7xn)

= f(z1,...,2; + A, ) = f() + f, (%) A

Depending on the function and smallness of A | this approximation may be accurate or not.
If A is not small, this approximation does not make any sense!

Interpretation 2: f; («) is the slope of f at point @ in the direction of ;.

Example

Let
f(zy, 20) = 20303 — 5wy + 16.

Then
fo (@1, 20) = dzyxy — Bal, [l (w1, 22) = 8xjx) — 1523,

Let us find the value of these derivatives at (1,2):
Fl(1,2) =64—40 =24, f. (1,2) =64 —60 = 4.

Since both numbers are positive, the function f increases in both variables at (1,2). This
also gives us an approximation of f(1+ A,2) and f(1,2+ A) for small A:

fA+A2)~ f(1,2)+ f. (1,2) A = f(1,2) + 24 A,
FL24+A) & F(1,2) + f1,(1,2) A = f(1,2) + 4A.

Elasticity
Definition 2. Elasticity of y = f(x) with respect to x; is the following limit:
Ay /Azx;
Ey,(y) = lim =% /=,
J A0 Yy T

where Ay = f(xy,...,x;+A, ... x,)— f(2r, ... 25, .., 2,) and Az = (z;+A)—x; = A.



Elasticity E,,(y) may be expressed in terms of the partial derivative as follows:
T DY %0y

E, (y) = 229
J(y) Yy A—00 A Yy 8xj

Example: y = f(x1,22) = z122¢™ "2 | then

0
Y _ o€ T2 4 20" T2 = gy (1 4 xp )™ T2
0x1
Hence,
r1 O T
E. (y) = 19 _ L cxo(1 4+ 11)e™ T =1+ 2.

;axl  pqxgeTite:
Remark 1. We could have arrived at the same solution easier if we noticed that

1oy _ 0
yoxr, Ox Y

This is easier because In takes product into sum:

0 1
Iny=Inz;+nrs+z;,+20 = —Iny=—+1.
0, 1

It remains to multiply by T
E ( ) = —1 = —1 +1)=1+
T X n T xIq.
1\Y 1 9$1 Yy 1 T 1

This trick is known as the logarithmic derivative and it is frequently useful for differentiating
functions defined as products of simpler terms.

Another example: Cobb-Douglas function with b=1—a

5,
Q=cK'L'" —= Ex(Q)= Ka—K InQ

:Ka—K(lnc—i—aan—i—(l—a)lnL)
1
:K.G'E:a

and similarly

0
E(Q) = LE}’_L In@

La—L(lnc—i-aan—i- (1—a)lnlL)
=L -(1-a) ! =1
= —a Z— — a.



Total differential

Definition 3. Total differential or first order differential of a function f :R™ — R 1is the
following formal object:

You should think about df as a function of @ and of formal increments dxz;, j=1,...,n.
Here dz; is a formal variable, instead of which we plug some specific Az; to compute the
approximation

"9
Af(z) ~ Za—jmj.

j=1

Then f(x+ A)~ f(x)+ Af(x).

For example, if f(xy,2y) = 22323 — 5x123 + 16, then
df (x) = (4o175 — 523) dv + (82323 — 152,23) dy.
Taking Az; = 0.02 and Azy = 0.03 at (1,2), we obtain

Af(1,2) =24 Azy+4- Azo =24-0.02+4-0.03 = 0.6.

Gradient

Definition 4. The gradient of f : R™ — R is the column vector of partial derivatives:

/
1
/

grad f(z) = | °7

We can rewrite the total differential as

df (@) = (grad f(x)) " da.

Note that if grad f(«) is orthogonal to a given increment vector Az, then
Af(x) =~ (grad f(z)) Az = 0.

This means that f changes slower than linearly in the direction of A.

Remark 2. Gradient is always orthogonal to the level sets. We have discussed this before
with linear forms!



Higher partial derivatives

Similarly to how we defined f;] , we can define partial derivatives of second order derivatives:

" _ 0 9f
fa:j,:ci<w) T axl axj (.’13)

Do we need to keep track of the order in which we compute them? Luckily, no. For nice
functions partial derivatives commute:

foy (@) = [ 2, ()

or in other notation
o*f B 0*f

8@- (9xj n axj (91:1

We can now go further and define higher order derivatives in the same way:

ok f
0x1 81'2 c. a{L‘k

Example: if f(z,x) = 22223 — 5z123 + 16, then

" _ 4 " _ 3 2 " _ 2.2 " _ 3
favwc1 = 4dz,, fwwc2 = 1612y — 1523, [y, ., = 247775 — 307122, fwww2 = 16x3, . ..



