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Function of many variables

Functions taking Rn to R (vectors to numbers) are called functions of many variables.
Notation:

f : Rn → R : (x1, . . . , xn) 7→ f(x1, . . . , xn).

Instead of f(x1, . . . , xn) we also write f(x) . For example, functions of two variables f :
R2 → R assign a number (output) to each a point on a plane (input).

Some functions are only defined on some domain D ⊂ Rn . In this case we write

f : D → R.

We have already seen two examples in this class:

• Linear forms f(x) = a⊤x , where a ∈ Mn,1 is a column vector.

• Quadratic forms f(x) = x⊤Ax , where A ∈ Mn,n is a symmetric square matrix.

Here’s an example from economics: the so-called Cobb-Douglas function f(K,L) takes two
positive numbers K (capital) and L (labour) as inputs and outputs the total production:

f(K,L) = cKaLb,

where c, a, b are some parameters.

A simple generalization of the notion of quadratic form is the quadratic function:

f : Rn → R : f(x) = x⊤Ax+ b⊤x+ c,

where A ∈ Mn,n , b ∈ Mn,1 and c ∈ R .

As we discussed before, a function may be represented by its graph. Here’s a reminder of its
definition:

Graph(f) = {(x, y) ∈ Rn+1 : y = f(x)}.
Drawing graphs is fine in n = 1 and n = 2 , but as n increases graphs become less helpful.

A very important concept associated with functions f : Rn → R is their level sets, which
we have also discussed before. Recall that if c ∈ R is some given level, the corresponding
level set is the set of points where f assumes this value:

{x ∈ Rn : f(x) = c}.

Recall the level sets (of height function) on topographic maps!



Partial derivatives

Definition 1. Partial derivative of f : Rn → R with respect to xj , j fixed is the following
limit:

∂f

∂xj

:= lim
∆→0

f(x1, . . . , xj +∆, . . . , xn)− f(x1, . . . , xj, . . . , xn)

∆

(provided that it exists). Alternative notation: f ′
xj
.

In other words, it’s just the derivative with respect to xj with other variables fixed.

Interpretation: the precise definition has lim∆→0 , but we can use f ′
xj
(x) to approximate f

at shifted point if ∆ is small:

f ′
xj
(x) ≈ f(x1, . . . , xj +∆, . . . , xn)− f(x1, . . . , xj, . . . , xn)

∆

=⇒ f(x1, . . . , xj +∆, . . . , xn) ≈ f(x) + f ′
xj
(x)∆.

Depending on the function and smallness of ∆ , this approximation may be accurate or not.
If ∆ is not small, this approximation does not make any sense!

Interpretation 2: f ′
xj
(x) is the slope of f at point x in the direction of xj .

Example

Let
f(x1, x2) = 2x2

1x
4
2 − 5x1x

3
2 + 16.

Then
f ′
x1
(x1, x2) = 4x1x

4
2 − 5x3

2, f ′
x2
(x1, x2) = 8x2

1x
3
2 − 15x1x

2
2.

Let us find the value of these derivatives at (1, 2) :

f ′
x1
(1, 2) = 64− 40 = 24, f ′

x2
(1, 2) = 64− 60 = 4.

Since both numbers are positive, the function f increases in both variables at (1, 2) . This
also gives us an approximation of f(1 + ∆, 2) and f(1, 2 + ∆) for small ∆ :

f(1 + ∆, 2) ≈ f(1, 2) + f ′
x1
(1, 2)∆ = f(1, 2) + 24∆,

f(1, 2 + ∆) ≈ f(1, 2) + f ′
x2
(1, 2)∆ = f(1, 2) + 4∆.

Elasticity

Definition 2. Elasticity of y = f(x) with respect to xj is the following limit:

Exj
(y) = lim

∆→0

∆y

y

/∆xj

xj

,

where ∆y = f(x1, . . . , xj+∆, . . . , xn)−f(x1, . . . , xj, . . . , xn) and ∆xj = (xj+∆)−xj = ∆ .



Elasticity Exj
(y) may be expressed in terms of the partial derivative as follows:

Exj
(y) =

xj

y
lim
∆→∞

∆y

∆
=

xj

y

∂y

∂xj

.

Example: y = f(x1, x2) = x1x2e
x1+x2 , then

∂y

∂x1

= x2e
x1+x2 + x1x2e

x1+x2 = x2(1 + x1)e
x1+x2 .

Hence,

Ex1(y) =
x1

y

∂y

∂x1

=
x1

x1x2ex1+x2
· x2(1 + x1)e

x1+x2 = 1 + x1.

Remark 1. We could have arrived at the same solution easier if we noticed that

1

y

∂y

∂x1

=
∂

∂x1

ln y.

This is easier because ln takes product into sum:

ln y = lnx1 + lnx2 + x1 + x2 =⇒ ∂

∂x1

ln y =
1

x1

+ 1.

It remains to multiply by x1 :

Ex1(y) = x1
∂

∂x1

ln y = x1

(
1

x1

+ 1

)
= 1 + x1.

This trick is known as the logarithmic derivative and it is frequently useful for differentiating
functions defined as products of simpler terms.

Another example: Cobb-Douglas function with b = 1− a

Q = cKaL1−a =⇒ EK(Q) = K
∂

∂K
lnQ

= K
∂

∂K
(ln c+ a lnK + (1− a) lnL)

= K · a · 1

K
= a.

and similarly

EL(Q) = L
∂

∂L
lnQ

= L
∂

∂L
(ln c+ a lnK + (1− a) lnL)

= L · (1− a) · 1
L

= 1− a.



Total differential

Definition 3. Total differential or first order differential of a function f : Rn → R is the
following formal object:

df(x) =
n∑

j=1

∂f

∂xj

dxj.

You should think about df as a function of x and of formal increments dxj , j = 1, . . . , n .
Here dxj is a formal variable, instead of which we plug some specific ∆xj to compute the
approximation

∆f(x) ≈
n∑

j=1

∂f

∂xj

∆xj.

Then f(x+∆) ≈ f(x) + ∆f(x) .

For example, if f(x1, x2) = 2x2
1x

4
2 − 5x1x

3
2 + 16 , then

df(x) = (4x1x
4
2 − 5x3

2) dx+ (8x2
1x

3
2 − 15x1x

2
2) dy.

Taking ∆x1 = 0.02 and ∆x2 = 0.03 at (1, 2) , we obtain

∆f(1, 2) = 24 ·∆x1 + 4 ·∆x2 = 24 · 0.02 + 4 · 0.03 = 0.6.

Gradient

Definition 4. The gradient of f : Rn → R is the column vector of partial derivatives:

grad f(x) =


f ′
x1

f ′
x2
...

f ′
xn

 .

We can rewrite the total differential as

df(x) = (grad f(x))⊤dx.

Note that if grad f(x) is orthogonal to a given increment vector ∆x , then

∆f(x) ≈ (grad f(x))⊤∆x = 0.

This means that f changes slower than linearly in the direction of ∆ .

Remark 2. Gradient is always orthogonal to the level sets. We have discussed this before
with linear forms!



Higher partial derivatives

Similarly to how we defined f ′
xj
, we can define partial derivatives of second order derivatives:

f ′′
xj ,xi

(x) :=
∂

∂xi

∂f

∂xj

(x).

Do we need to keep track of the order in which we compute them? Luckily, no. For nice
functions partial derivatives commute:

f ′′
xj ,xi

(x) = f ′′
xi,xj

(x)

or in other notation
∂2f

∂xi ∂xj

=
∂2f

∂xj ∂xi

.

We can now go further and define higher order derivatives in the same way:

∂kf

∂x1 ∂x2 . . . ∂xk

.

Example: if f(x1, x2) = 2x2
1x

4
2 − 5x1x

3
2 + 16 , then

f ′′
x1,x1

= 4x4
2, f ′′

x1,x2
= 16x1x

3
2 − 15x2

2, f ′′
x2,x2

= 24x2
1x

2
2 − 30x1x2, f ′′′

x1,x1,x2
= 16x3

2, . . .


