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Second order differential

Last time we have discussed how to approximate f(x+ Ax) for small Az using first order
differential:

flx+ Az) ~ f(x) + df (z, Az),
where

If (¢, Ax) Z ij = (grad f(z)) " Az

Recall that if we take a step @ ~~ Asc in the direction orthogonal to grad f(x), the above
approximation degenerates:

fle+ Ax) ~ f(x),
which is trivial. If we still want to catch the effect of this shift on f, we need more precise
information, provided by the following object:

Definition 1. The second order differential of a function f : R™ — R s the following

formal object:

i,7=1

As with the first order differential, you should think of d?f as a function of @ and of formal
increments dx;, j =1,...,n. We can then evaluate d?f(x) on any vector of increments
Az as follows:

flo,Az)=>" &El axj Az; Axj.

’L]f

In the n = 2 case it looks as follows:

d2f(33, Aw) lexz( ) (Axl) + 2frlm2< ) A‘Tl A(L’g + frgmg( ) (AxQ)Q'

If Az is small, we have the following approximation:

flx+ Azx) = f(x) + df (z, Ax) + %dzf(w,Am)

If n =2, this reads:
[+ Az) = f(x) + [, (x) Ay + f, (x) Azs

5 P @) (A + (@) A Ay + 5 1, (&) (Azs)?

If n =1, this looks even simpler:

Flo+8) % f() + f@) A+ 5 () A7



Here are a few remarks:

e If Az is orthogonal to grad f(z), we have f(x+Ax)~ f(x)+1d*f(x, Az), so the
dependence on Az does not disappear now!

e For other Ax , the approximation is now more precise. We say that the boxed formula
above gives the second order approximation of f near x

e Note that as a function of Az the second order differential d?f(x, Ax) is a quadratic
form.

e Geometric interpretation: if first order approximation corresponds to finding a best line
or plane matching the landscape of f at a given point, the second order approximation
gives the best paraboloid/hyperboloid approximation of f near some fixed . Here
is an illustration of this:
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The yellow surface on this plot is given by z = 3224212 . It is an second order approximation
of z = (3z%+2y%)(1 — 2%/10 — y*/20) . Note how the two surfaces touch at z =y = 0, how
they remain close if (z,y) ~ (0,0), but they quickly diverge from each other if we move
away from z =y =0 too far.

Hessian

Definition 2. Hessian of a function f:R™ — R at point € R" is a matric H(x) € M, ,
of second partial derivatives:

82
(H@)s = 5o




Similarly to how we used gradient to represent the first order differential by

df (x) = (grad f(x)) " dz,

we can use Hessian to represent the second order differential:

& f(x) = (de)" H(x) d.

This formula makes the fact that d?f(x) is a quadratic form of dx mentioned above even
clearer.

Note that H(x) is symmetric, because partial derivatives commute:

B 0*f B o0 f B B
(H<m))lj - axl 8%_7‘ - 8%_7‘ azl - (H(m))lj

Combinind the description of df (x) in terms of grad f(z) and of d*f(x) in terms of H(x),
we obtain

f(x+ Ax) =~ f(x) + (grad f(x)) " Ax + % (Az)"H(x) Az

This formula is but another representation of second order approximation of f. Such ap-
proximations are called Taylor expansions (of first/second order). There are also Taylor
expansions of higher oders (using higher derivatives).

Example

Let n = 2, consider f(z,y) = x¥ defined for z,y > 0. Let us find its Taylor expansion
near r =1 and y =2:

Therefore,

erad f(1,2) — (g) H(1,2) — G é)

Therefore, we have the following second order Taylor approximation:

1 1
f(l+Ax,2+Ay)z1+2~AI+0-Ay+§~2(Am)2+1~AJJAy+§-O-(Ay)z.
We can also write this as

f(x,y):1—|—2-(:E—1)+0-(y—2)+%-2(:v—1)2—|—1-(:v—1)(y—2)+%-0-(y—2)2,



where t1=14+Ar = Ar=x—1and y=24+Ay = Ay=y—2.

For example, our approximation gives
f£(1.01,2.01) =~ 1.0202,
whereas the exact value is

f£(1.01,2.01) = 1.020201508.. ..

Free (unconstrained) extrema: first order conditions

Definition 3. A point &y € R™ is a point of local mazximum of a function f :R"™ — R if
f(x) < f(xg) for all for all x sufficiently close to xy .

It is a point of local minimum if f(x) > f(xo) for all x sufficiently close to x .

Recall that to find local extrema of a smooth function of one variable f: R — R, we first
find candidate extrema points, that is, x such that

f'(x)=0.

Some of these points may not be extremal (we need to check second order conditions), but
if = is a local extrema, then f’(x) =0 (the conditon is necessary).

If f:R*" — R is a function of many variables and « is its minima or maxima, then in
particular it is extrema of a function of one variable g(z;) = f(x) (all other variables are
fixed except one; make sure that you understand this argument well!). Therefore, ¢'(z;) =0,

or af
g'(x;) = o, 0.

Therefore, all partial derivatives must be zero at an extremal point. We can write this
concisely as:

fi(x)=0 foralj=1,...,n,

Zj

or using gradient notation as

grad f(x) = 0.

Let us formulate this as a theorem:

Theorem 1 (First order conditions). If ® is a local minimum or local mazimum point of
f:R" =R, then
grad f(x) = 0.

As in the univariate case, this is a necessary condition for & to be an extrema, but not
sufficient.

Remark 1. Consider f(x) = 2*. Clearly, f'(0) = 32* |,—o= 0, but x = 0 s neither
minimum, nor maximum of f.



Type of the extremum: second order conditions

If we found « such that grad f(xy) = 0, then we have the following approximation of f
near this point:

f(@) > (o) + 5 ( — w0) H(zo) (@ = ).

How do we know if xy is a minimum or maximum? Can it be neither?
Note that f(x) > f(xo) for x ~ x¢ if

(& — o) H(x0) (T — 20) > 0.

If  is a local minimum, this condition should hold for all & ~ x,, which by definition
means that H(xg) is positive semi-definite.

Similarly, if @ is a point of local maximum, then f(x) < f(xq) for all  ~ x;, which is
equivalent to H(xy) being negative semi-definite.

These are again necessary conditions, but what about sufficient? More precisely, if we found
@y such that grad f(axy) = 0 and H(xy) is positive semidefinite, can we conclude that f
has minimum at this point? The answer is: yes, if H(x() is positive definite (strictly).

Theorem 2. If xy is a point such that grad f(xy) =0 and H(xo) is positive definite,
then f has a local minimum at this point.

If xy is a point such that grad f(xg) = 0 and H(xo) is negative definite, then f has
a local mazimum at this point.

If xy is a point such that grad f(xg) = 0 and H(xo) is indefinite, then f does has
neither local mazximum, nor local minimum at this point.

If @ is a point such that grad f(xo) =0 and H(xy) is semidefinite (positive or nega-
tive), then further analysis is required to say if it is maximum, minimum or neither.

Remark 2. If H(xq) is only semidefinite, checking whether xq is a local extremum requires
more work. Consider again the remark above: if f(x) = x3, its Hessian is a 1 x 1 matriz
identified with its second derivative: H(x) = f"(x) = 6x. At zero, this Hessian is zero:
H(0) =0, so both >0 and < 0. However, o =0 is clearly not a local extremum of f .

Consider another example: f(x) = z*. In this case H(0) = 0, but we do have a local
manimum at xo = 0. These examples show that some more precise expansions are needed to
check extremality at points with semidefinite Hessians.

Remark 3. Recall that to say that H(xo) has some type (positive (semi-)definite/negative
(semi-)definite, indefinite) is the same as to say that the corresponding quadratic form
d*f(xq) has this type. Which is why we frequently talk about d?f(xq) being of some type.

Remark 4. Geometrically, positive (negative) definite Hessian means that the function f
looks like a paraboloid openning upwards (downwards) near xo. If H(xo) is indefinite, f
looks like a hyperboloid near xy. In this case we say that f has a saddle point at x .



Example
Let f(z,y) = xe "% Then

2 2 2 2 1
=0 = e " Y — 2"V =0 = z=4+——

V2

and similarly
2 2
fo=0 = 2y =0 = y=0.

Therefore, we have two candidate extremum points: (\%,O) and (—\%,O). We need to
check their types:

A 4 o2y [2x(22% — 3) 2y(22* — 1)
H(a:):(” xy):e””z y2( > 2 -
vy Sy 2y(2z° — 1) 2z(2y*—1)
1 (% 0
H <—’ O) = ¢ 2 V2 5 .
V2 ( 0 -7
This matrix is negative definite, so (\/Li’ 0) is a local maximum. Next, at (—\%, 0) we have

1 (5 0
H(——,o) — ez [ V2 .
V2 (0 v

Since this matrix is positive definite, (—\/LE, 0) is a local minimum of f.

At (%,O) we have



