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Second order differential

Last time we have discussed how to approximate f(x+∆x) for small ∆x using first order
differential:

f(x+∆x) ≈ f(x) + df(x,∆x),

where

df(x,∆x) =
n∑

i=1

∂f

xj

∆xj = (grad f(x))⊤∆x

Recall that if we take a step x⇝ ∆x in the direction orthogonal to grad f(x) , the above
approximation degenerates:

f(x+∆x) ≈ f(x),

which is trivial. If we still want to catch the effect of this shift on f , we need more precise
information, provided by the following object:

Definition 1. The second order differential of a function f : Rn → R is the following
formal object:

d2f(x) =
n∑

i,j=1

∂2f

∂xi ∂xj

dxi dxj.

As with the first order differential, you should think of d2f as a function of x and of formal
increments dxj , j = 1, . . . , n . We can then evaluate d2f(x) on any vector of increments
∆x as follows:

d2f(x,∆x) =
n∑

i,j=1

∂2f

∂xi ∂xj

∆xi ∆xj.

In the n = 2 case it looks as follows:

d2f(x,∆x) = f ′′
x1x2

(x) (∆x1)
2 + 2f ′′

x1x2
(x)∆x1∆x2 + f ′′

x2x2
(x) (∆x2)

2.

If ∆x is small, we have the following approximation:

f(x+∆x) ≈ f(x) + df(x,∆x) +
1

2
d2f(x,∆x)

If n = 2 , this reads:

f(x+∆x) ≈ f(x) + f ′
x1
(x)∆x1 + f ′

x2
(x)∆x2

+
1

2
f ′′
x1
(x) (∆x1)

2 + f ′′
x1x2

(x)∆x1∆x2 +
1

2
f ′′
x2
(x) (∆x2)

2

If n = 1 , this looks even simpler:

f(x+∆) ≈ f(x) + f ′(x)∆ +
1

2
f ′′(x)∆2.



Here are a few remarks:

• If ∆x is orthogonal to grad f(x) , we have f(x+∆x) ≈ f(x)+ 1
2
d2f(x,∆x) , so the

dependence on ∆x does not disappear now!

• For other ∆x , the approximation is now more precise. We say that the boxed formula
above gives the second order approximation of f near x

• Note that as a function of ∆x the second order differential d2f(x,∆x) is a quadratic
form.

• Geometric interpretation: if first order approximation corresponds to finding a best line
or plane matching the landscape of f at a given point, the second order approximation
gives the best paraboloid/hyperboloid approximation of f near some fixed x . Here
is an illustration of this:
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The yellow surface on this plot is given by z = 3x2+2y2 . It is an second order approximation
of z = (3x2 +2y2)(1− x2/10− y2/20) . Note how the two surfaces touch at x = y = 0 , how
they remain close if (x, y) ≈ (0, 0) , but they quickly diverge from each other if we move
away from x = y = 0 too far.

Hessian

Definition 2. Hessian of a function f : Rn → R at point x ∈ Rn is a matrix H(x) ∈ Mn,n

of second partial derivatives:

(H(x))ij =
∂2f

∂xi ∂xj

.



Similarly to how we used gradient to represent the first order differential by

df(x) = (grad f(x))⊤dx,

we can use Hessian to represent the second order differential:

d2f(x) = (dx)⊤H(x) dx.

This formula makes the fact that d2f(x) is a quadratic form of dx mentioned above even
clearer.

Note that H(x) is symmetric, because partial derivatives commute:

(H(x))ij =
∂2f

∂xi ∂xj

=
∂2f

∂xj ∂xi

= (H(x))ij.

Combinind the description of df(x) in terms of grad f(x) and of d2f(x) in terms of H(x) ,
we obtain

f(x+∆x) ≈ f(x) + (grad f(x))⊤∆x+
1

2
(∆x)⊤H(x)∆x.

This formula is but another representation of second order approximation of f . Such ap-
proximations are called Taylor expansions (of first/second order). There are also Taylor
expansions of higher oders (using higher derivatives).

Example

Let n = 2 , consider f(x, y) = xy defined for x, y > 0 . Let us find its Taylor expansion
near x = 1 and y = 2 :

f(1, 2) = 12 = 1

f ′
x(1, 2) = yxy−1 |x=1,y=2= 2

f ′
y(1, 2) = xy lnx |x=1,y=2= 0

f ′′
xx(1, 2) = y(y − 1)xy−2 |x=1,y=2= 2

f ′′
xy(1, 2) = 1 · xy−1 + yxy−1 lnx |x=1,y=2= 1

f ′′
yy(1, 2) = xy(lnx)2 |x=1,y=2= 0.

Therefore,

grad f(1, 2) =

(
2
0

)
, H(1, 2) =

(
2 1
1 0

)
.

Therefore, we have the following second order Taylor approximation:

f(1 + ∆x, 2 + ∆y) ≈ 1 + 2 ·∆x+ 0 ·∆y +
1

2
· 2(∆x)2 + 1 ·∆x∆y +

1

2
· 0 · (∆y)2.

We can also write this as

f(x, y) = 1 + 2 · (x− 1) + 0 · (y − 2) +
1

2
· 2(x− 1)2 + 1 · (x− 1) (y − 2) +

1

2
· 0 · (y − 2)2,



where x = 1 +∆x =⇒ ∆x = x− 1 and y = 2 +∆y =⇒ ∆y = y − 2 .

For example, our approximation gives

f(1.01, 2.01) ≈ 1.0202,

whereas the exact value is

f(1.01, 2.01) = 1.020201508 . . .

Free (unconstrained) extrema: first order conditions

Definition 3. A point x0 ∈ Rn is a point of local maximum of a function f : Rn → R if
f(x) ≤ f(x0) for all for all x sufficiently close to x0 .

It is a point of local minimum if f(x) ≥ f(x0) for all x sufficiently close to x0 .

Recall that to find local extrema of a smooth function of one variable f : R → R , we first
find candidate extrema points, that is, x such that

f ′(x) = 0.

Some of these points may not be extremal (we need to check second order conditions), but
if x is a local extrema, then f ′(x) = 0 (the conditon is necessary).

If f : Rn → R is a function of many variables and x is its minima or maxima, then in
particular it is extrema of a function of one variable g(xj) = f(x) (all other variables are
fixed except one; make sure that you understand this argument well!). Therefore, g′(xj) = 0 ,
or

g′(xj) =
∂f

∂xj

= 0.

Therefore, all partial derivatives must be zero at an extremal point. We can write this
concisely as:

f ′
xj
(x) = 0 for all j = 1, . . . , n,

or using gradient notation as

grad f(x) = 0.

Let us formulate this as a theorem:

Theorem 1 (First order conditions). If x is a local minimum or local maximum point of
f : Rn → R , then

grad f(x) = 0.

As in the univariate case, this is a necessary condition for x to be an extrema, but not
sufficient.

Remark 1. Consider f(x) = x3 . Clearly, f ′(0) = 3x2 |x=0= 0 , but x = 0 is neither
minimum, nor maximum of f .



Type of the extremum: second order conditions

If we found x0 such that grad f(x0) = 0 , then we have the following approximation of f
near this point:

f(x) ≈ f(x0) +
1

2
(x− x0)

⊤H(x0) (x− x0).

How do we know if x0 is a minimum or maximum? Can it be neither?

Note that f(x) ≥ f(x0) for x ≈ x0 if

(x− x0)
⊤H(x0) (x− x0) ≥ 0.

If x is a local minimum, this condition should hold for all x ≈ x0 , which by definition
means that H(x0) is positive semi-definite.

Similarly, if x is a point of local maximum, then f(x) ≤ f(x0) for all x ≈ x0 , which is
equivalent to H(x0) being negative semi-definite.

These are again necessary conditions, but what about sufficient? More precisely, if we found
x0 such that grad f(x0) = 0 and H(x0) is positive semidefinite, can we conclude that f
has minimum at this point? The answer is: yes, if H(x0) is positive definite (strictly).

Theorem 2. If x0 is a point such that grad f(x0) = 0 and H(x0) is positive definite,
then f has a local minimum at this point.

If x0 is a point such that grad f(x0) = 0 and H(x0) is negative definite, then f has
a local maximum at this point.

If x0 is a point such that grad f(x0) = 0 and H(x0) is indefinite, then f does has
neither local maximum, nor local minimum at this point.

If x0 is a point such that grad f(x0) = 0 and H(x0) is semidefinite (positive or nega-
tive), then further analysis is required to say if it is maximum, minimum or neither.

Remark 2. If H(x0) is only semidefinite, checking whether x0 is a local extremum requires
more work. Consider again the remark above: if f(x) = x3 , its Hessian is a 1 × 1 matrix
identified with its second derivative: H(x) = f ′′(x) = 6x . At zero, this Hessian is zero:
H(0) = 0 , so both ≥ 0 and ≤ 0 . However, x0 = 0 is clearly not a local extremum of f .

Consider another example: f(x) = x4 . In this case H(0) = 0 , but we do have a local
minimum at x0 = 0 . These examples show that some more precise expansions are needed to
check extremality at points with semidefinite Hessians.

Remark 3. Recall that to say that H(x0) has some type (positive (semi-)definite/negative
(semi-)definite, indefinite) is the same as to say that the corresponding quadratic form
d2f(x0) has this type. Which is why we frequently talk about d2f(x0) being of some type.

Remark 4. Geometrically, positive (negative) definite Hessian means that the function f
looks like a paraboloid openning upwards (downwards) near x0 . If H(x0) is indefinite, f
looks like a hyperboloid near x0 . In this case we say that f has a saddle point at x0 .



Example

Let f(x, y) = xe−x2−y2 . Then

f ′
x = 0 =⇒ e−x2−y2 − 2x2e−x2−y2 = 0 =⇒ x = ± 1√

2

and similarly
f ′
y = 0 =⇒ −2ye−x2−y2 = 0 =⇒ y = 0.

Therefore, we have two candidate extremum points: ( 1√
2
, 0) and (− 1√

2
, 0) . We need to

check their types:

H(x) =

(
f ′′
xx f ′′

xy

f ′′
xy f ′′

yy

)
= e−x2−y2

(
2x(2x2 − 3) 2y(2x2 − 1)
2y(2x2 − 1) 2x(2y2 − 1)

)
.

At ( 1√
2
, 0) we have

H

(
1√
2
, 0

)
= e−

1
2

(
−4√
2

0

0 − 2√
2

)
.

This matrix is negative definite, so ( 1√
2
, 0) is a local maximum. Next, at (− 1√

2
, 0) we have

H

(
− 1√

2
, 0

)
= e−

1
2

(
4√
2

0

0 2√
2

)
.

Since this matrix is positive definite, (− 1√
2
, 0) is a local minimum of f .


