

Theory sheet 10

Second order differential

Last time we have discussed how to approximate $f(\mathbf{x} + \Delta\mathbf{x})$ for small $\Delta\mathbf{x}$ using first order differential:

$$f(\mathbf{x} + \Delta\mathbf{x}) \approx f(\mathbf{x}) + df(\mathbf{x}, \Delta\mathbf{x}),$$

where

$$df(\mathbf{x}, \Delta\mathbf{x}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i = (\text{grad } f(\mathbf{x}))^\top \Delta\mathbf{x}$$

Recall that if we take a step $\mathbf{x} \rightsquigarrow \Delta\mathbf{x}$ in the direction orthogonal to $\text{grad } f(\mathbf{x})$, the above approximation degenerates:

$$f(\mathbf{x} + \Delta\mathbf{x}) \approx f(\mathbf{x}),$$

which is trivial. If we still want to catch the effect of this shift on f , we need more precise information, provided by the following object:

Definition 1. *The second order differential of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is the following formal object:*

$$d^2 f(\mathbf{x}) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} dx_i dx_j.$$

As with the first order differential, you should think of $d^2 f$ as a function of \mathbf{x} and of formal increments dx_j , $j = 1, \dots, n$. We can then evaluate $d^2 f(\mathbf{x})$ on any vector of increments $\Delta\mathbf{x}$ as follows:

$$d^2 f(\mathbf{x}, \Delta\mathbf{x}) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} \Delta x_i \Delta x_j.$$

In the $n = 2$ case it looks as follows:

$$d^2 f(\mathbf{x}, \Delta\mathbf{x}) = f''_{x_1 x_2}(\mathbf{x}) (\Delta x_1)^2 + 2 f''_{x_1 x_2}(\mathbf{x}) \Delta x_1 \Delta x_2 + f''_{x_2 x_2}(\mathbf{x}) (\Delta x_2)^2.$$

If $\Delta\mathbf{x}$ is small, we have the following approximation:

$$f(\mathbf{x} + \Delta\mathbf{x}) \approx f(\mathbf{x}) + df(\mathbf{x}, \Delta\mathbf{x}) + \frac{1}{2} d^2 f(\mathbf{x}, \Delta\mathbf{x})$$

If $n = 2$, this reads:

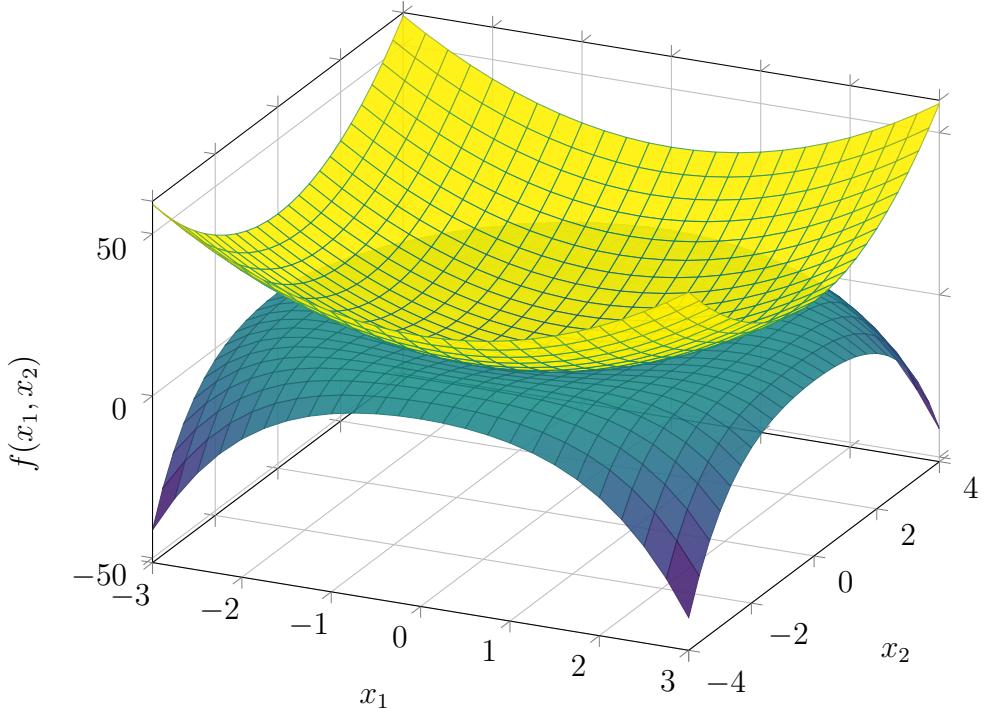
$$\begin{aligned} f(\mathbf{x} + \Delta\mathbf{x}) &\approx f(\mathbf{x}) + f'_{x_1}(\mathbf{x}) \Delta x_1 + f'_{x_2}(\mathbf{x}) \Delta x_2 \\ &\quad + \frac{1}{2} f''_{x_1}(\mathbf{x}) (\Delta x_1)^2 + f''_{x_1 x_2}(\mathbf{x}) \Delta x_1 \Delta x_2 + \frac{1}{2} f''_{x_2}(\mathbf{x}) (\Delta x_2)^2 \end{aligned}$$

If $n = 1$, this looks even simpler:

$$f(x + \Delta) \approx f(x) + f'(x) \Delta + \frac{1}{2} f''(x) \Delta^2.$$

Here are a few remarks:

- If $\Delta\mathbf{x}$ is orthogonal to $\text{grad } f(\mathbf{x})$, we have $f(\mathbf{x} + \Delta\mathbf{x}) \approx f(\mathbf{x}) + \frac{1}{2} d^2 f(\mathbf{x}, \Delta\mathbf{x})$, so the dependence on $\Delta\mathbf{x}$ does not disappear now!
- For other $\Delta\mathbf{x}$, the approximation is now more precise. We say that the boxed formula above gives the second order approximation of f near \mathbf{x}
- Note that as a function of $\Delta\mathbf{x}$ the second order differential $d^2 f(\mathbf{x}, \Delta\mathbf{x})$ is a quadratic form.
- Geometric interpretation: if first order approximation corresponds to finding a best line or plane matching the landscape of f at a given point, the second order approximation gives the best paraboloid/hyperboloid approximation of f near some fixed \mathbf{x} . Here is an illustration of this:



The yellow surface on this plot is given by $z = 3x^2 + 2y^2$. It is a second order approximation of $z = (3x^2 + 2y^2)(1 - x^2/10 - y^2/20)$. Note how the two surfaces touch at $x = y = 0$, how they remain close if $(x, y) \approx (0, 0)$, but they quickly diverge from each other if we move away from $x = y = 0$ too far.

Hessian

Definition 2. Hessian of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ at point $\mathbf{x} \in \mathbb{R}^n$ is a matrix $H(\mathbf{x}) \in M_{n,n}$ of second partial derivatives:

$$(H(\mathbf{x}))_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}.$$

Similarly to how we used gradient to represent the first order differential by

$$df(\mathbf{x}) = (\text{grad } f(\mathbf{x}))^\top d\mathbf{x},$$

we can use Hessian to represent the second order differential:

$$d^2 f(\mathbf{x}) = (d\mathbf{x})^\top H(\mathbf{x}) d\mathbf{x}.$$

This formula makes the fact that $d^2 f(\mathbf{x})$ is a quadratic form of $d\mathbf{x}$ mentioned above even clearer.

Note that $H(\mathbf{x})$ is symmetric, because partial derivatives commute:

$$(H(\mathbf{x}))_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} = (H(\mathbf{x}))_{ji}.$$

Combining the description of $df(\mathbf{x})$ in terms of $\text{grad } f(\mathbf{x})$ and of $d^2 f(\mathbf{x})$ in terms of $H(\mathbf{x})$, we obtain

$$f(\mathbf{x} + \Delta\mathbf{x}) \approx f(\mathbf{x}) + (\text{grad } f(\mathbf{x}))^\top \Delta\mathbf{x} + \frac{1}{2} (\Delta\mathbf{x})^\top H(\mathbf{x}) \Delta\mathbf{x}.$$

This formula is but another representation of second order approximation of f . Such approximations are called Taylor expansions (of first/second order). There are also Taylor expansions of higher orders (using higher derivatives).

Example

Let $n = 2$, consider $f(x, y) = x^y$ defined for $x, y > 0$. Let us find its Taylor expansion near $x = 1$ and $y = 2$:

$$\begin{aligned} f(1, 2) &= 1^2 = 1 \\ f'_x(1, 2) &= yx^{y-1} \Big|_{x=1, y=2} = 2 \\ f'_y(1, 2) &= x^y \ln x \Big|_{x=1, y=2} = 0 \\ f''_{xx}(1, 2) &= y(y-1)x^{y-2} \Big|_{x=1, y=2} = 2 \\ f''_{xy}(1, 2) &= 1 \cdot x^{y-1} + yx^{y-1} \ln x \Big|_{x=1, y=2} = 1 \\ f''_{yy}(1, 2) &= x^y (\ln x)^2 \Big|_{x=1, y=2} = 0. \end{aligned}$$

Therefore,

$$\text{grad } f(1, 2) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad H(1, 2) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}.$$

Therefore, we have the following second order Taylor approximation:

$$f(1 + \Delta x, 2 + \Delta y) \approx 1 + 2 \cdot \Delta x + 0 \cdot \Delta y + \frac{1}{2} \cdot 2(\Delta x)^2 + 1 \cdot \Delta x \Delta y + \frac{1}{2} \cdot 0 \cdot (\Delta y)^2.$$

We can also write this as

$$f(x, y) = 1 + 2 \cdot (x - 1) + 0 \cdot (y - 2) + \frac{1}{2} \cdot 2(x - 1)^2 + 1 \cdot (x - 1)(y - 2) + \frac{1}{2} \cdot 0 \cdot (y - 2)^2,$$

where $x = 1 + \Delta x \implies \Delta x = x - 1$ and $y = 2 + \Delta y \implies \Delta y = y - 2$.

For example, our approximation gives

$$f(1.01, 2.01) \approx 1.0202,$$

whereas the exact value is

$$f(1.01, 2.01) = 1.020201508\dots$$

Free (unconstrained) extrema: first order conditions

Definition 3. A point $\mathbf{x}_0 \in \mathbb{R}^n$ is a point of local maximum of a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ if $f(\mathbf{x}) \leq f(\mathbf{x}_0)$ for all for all \mathbf{x} sufficiently close to \mathbf{x}_0 .

It is a point of local minimum if $f(\mathbf{x}) \geq f(\mathbf{x}_0)$ for all \mathbf{x} sufficiently close to \mathbf{x}_0 .

Recall that to find local extrema of a smooth function of one variable $f : \mathbb{R} \rightarrow \mathbb{R}$, we first find candidate extrema points, that is, x such that

$$f'(x) = 0.$$

Some of these points may not be extremal (we need to check second order conditions), but if x is a local extrema, then $f'(x) = 0$ (the conditon is necessary).

If $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a function of many variables and \mathbf{x} is its minima or maxima, then in particular it is extrema of a function of one variable $g(x_j) = f(\mathbf{x})$ (all other variables are fixed except one; make sure that you understand this argument well!). Therefore, $g'(x_j) = 0$, or

$$g'(x_j) = \frac{\partial f}{\partial x_j} = 0.$$

Therefore, all partial derivatives must be zero at an extremal point. We can write this concisely as:

$$f'_{x_j}(\mathbf{x}) = 0 \quad \text{for all } j = 1, \dots, n,$$

or using gradient notation as

$$\text{grad } f(\mathbf{x}) = \mathbf{0}.$$

Let us formulate this as a theorem:

Theorem 1 (First order conditions). *If \mathbf{x} is a local minimum or local maximum point of $f : \mathbb{R}^n \rightarrow \mathbb{R}$, then*

$$\text{grad } f(\mathbf{x}) = \mathbf{0}.$$

As in the univariate case, this is a necessary condition for \mathbf{x} to be an extrema, *but not sufficient*.

Remark 1. Consider $f(x) = x^3$. Clearly, $f'(0) = 3x^2|_{x=0} = 0$, but $x = 0$ is *neither minimum, nor maximum of f* .

Type of the extremum: second order conditions

If we found \mathbf{x}_0 such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$, then we have the following approximation of f near this point:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top H(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0).$$

How do we know if \mathbf{x}_0 is a minimum or maximum? Can it be neither?

Note that $f(\mathbf{x}) \geq f(\mathbf{x}_0)$ for $\mathbf{x} \approx \mathbf{x}_0$ if

$$(\mathbf{x} - \mathbf{x}_0)^\top H(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) \geq 0.$$

If \mathbf{x} is a local minimum, this condition should hold for all $\mathbf{x} \approx \mathbf{x}_0$, which by definition means that $H(\mathbf{x}_0)$ is positive semi-definite.

Similarly, if \mathbf{x} is a point of local maximum, then $f(\mathbf{x}) \leq f(\mathbf{x}_0)$ for all $\mathbf{x} \approx \mathbf{x}_0$, which is equivalent to $H(\mathbf{x}_0)$ being negative semi-definite.

These are again necessary conditions, but what about sufficient? More precisely, if we found \mathbf{x}_0 such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$ and $H(\mathbf{x}_0)$ is positive semidefinite, can we conclude that f has minimum at this point? The answer is: yes, if $H(\mathbf{x}_0)$ is positive definite (strictly).

Theorem 2. *If \mathbf{x}_0 is a point such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$ and $H(\mathbf{x}_0)$ is positive definite, then f has a local minimum at this point.*

If \mathbf{x}_0 is a point such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$ and $H(\mathbf{x}_0)$ is negative definite, then f has a local maximum at this point.

If \mathbf{x}_0 is a point such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$ and $H(\mathbf{x}_0)$ is indefinite, then f does not have neither local maximum, nor local minimum at this point.

If \mathbf{x}_0 is a point such that $\text{grad } f(\mathbf{x}_0) = \mathbf{0}$ and $H(\mathbf{x}_0)$ is semidefinite (positive or negative), then further analysis is required to say if it is maximum, minimum or neither.

Remark 2. *If $H(\mathbf{x}_0)$ is only semidefinite, checking whether \mathbf{x}_0 is a local extremum requires more work. Consider again the remark above: if $f(x) = x^3$, its Hessian is a 1×1 matrix identified with its second derivative: $H(x) = f''(x) = 6x$. At zero, this Hessian is zero: $H(0) = 0$, so both ≥ 0 and ≤ 0 . However, $x_0 = 0$ is clearly not a local extremum of f .*

Consider another example: $f(x) = x^4$. In this case $H(0) = 0$, but we do have a local minimum at $x_0 = 0$. These examples show that some more precise expansions are needed to check extremality at points with semidefinite Hessians.

Remark 3. *Recall that to say that $H(\mathbf{x}_0)$ has some type (positive (semi-)definite/negative (semi-)definite, indefinite) is the same as to say that the corresponding quadratic form $d^2 f(\mathbf{x}_0)$ has this type. Which is why we frequently talk about $d^2 f(\mathbf{x}_0)$ being of some type.*

Remark 4. *Geometrically, positive (negative) definite Hessian means that the function f looks like a paraboloid opening upwards (downwards) near \mathbf{x}_0 . If $H(\mathbf{x}_0)$ is indefinite, f looks like a hyperboloid near \mathbf{x}_0 . In this case we say that f has a saddle point at \mathbf{x}_0 .*

Example

Let $f(x, y) = xe^{-x^2-y^2}$. Then

$$f'_x = 0 \implies e^{-x^2-y^2} - 2x^2e^{-x^2-y^2} = 0 \implies x = \pm \frac{1}{\sqrt{2}}$$

and similarly

$$f'_y = 0 \implies -2ye^{-x^2-y^2} = 0 \implies y = 0.$$

Therefore, we have two candidate extremum points: $(\frac{1}{\sqrt{2}}, 0)$ and $(-\frac{1}{\sqrt{2}}, 0)$. We need to check their types:

$$H(\mathbf{x}) = \begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{xy} & f''_{yy} \end{pmatrix} = e^{-x^2-y^2} \begin{pmatrix} 2x(2x^2-3) & 2y(2x^2-1) \\ 2y(2x^2-1) & 2x(2y^2-1) \end{pmatrix}.$$

At $(\frac{1}{\sqrt{2}}, 0)$ we have

$$H\left(\frac{1}{\sqrt{2}}, 0\right) = e^{-\frac{1}{2}} \begin{pmatrix} \frac{-4}{\sqrt{2}} & 0 \\ 0 & -\frac{2}{\sqrt{2}} \end{pmatrix}.$$

This matrix is negative definite, so $(\frac{1}{\sqrt{2}}, 0)$ is a local maximum. Next, at $(-\frac{1}{\sqrt{2}}, 0)$ we have

$$H\left(-\frac{1}{\sqrt{2}}, 0\right) = e^{-\frac{1}{2}} \begin{pmatrix} \frac{4}{\sqrt{2}} & 0 \\ 0 & \frac{2}{\sqrt{2}} \end{pmatrix}.$$

Since this matrix is positive definite, $(-\frac{1}{\sqrt{2}}, 0)$ is a local minimum of f .