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Différentielle d’ordre deux

La dernière fois, nous avons vu comment approximer f(x + ∆x) pour un petit ∆x en
utilisant la différentielle d’ordre un :

f(x+∆x) ≈ f(x) + df(x,∆x),

où

df(x,∆x) =
n∑

j=1

∂f

∂xj

∆xj = (grad f(x))⊤∆x

Rappelons que si l’on fait un pas x ⇝ ∆x dans la direction orthogonale à grad f(x) ,
l’approximation ci-dessus dégénère :

f(x+∆x) ≈ f(x),

ce qui est trivial. Si l’on souhaite tout de même capturer l’effet de ce déplacement sur f , il
nous faut une information plus précise, fournie par l’objet suivant :

Définition 1. La différentielle d’ordre deux d’une fonction f : Rn → R est l’objet formel
suivant :

d2f(x) =
n∑

i,j=1

∂2f

∂xi ∂xj

dxi dxj.

Comme pour la différentielle d’ordre un, il faut voir d2f comme une fonction de x et des
accroissements formels dxj , j = 1, . . . , n . On peut alors évaluer d2f(x) sur n’importe quel
vecteur d’accroissements ∆x de la façon suivante :

d2f(x,∆x) =
n∑

i,j=1

∂2f

∂xi ∂xj

∆xi ∆xj.

Dans le cas n = 2 , cela s’écrit :

d2f(x,∆x) = f ′′
x1x1

(x) (∆x1)
2 + 2f ′′

x1x2
(x)∆x1∆x2 + f ′′

x2x2
(x) (∆x2)

2.

Si ∆x est petit, on a l’approximation suivante :

f(x+∆x) ≈ f(x) + df(x,∆x) +
1

2
d2f(x,∆x)

Si n = 2 , cela s’écrit :

f(x+∆x) ≈ f(x) + f ′
x1
(x)∆x1 + f ′

x2
(x)∆x2

+
1

2
f ′′
x1
(x) (∆x1)

2 + f ′′
x1x2

(x)∆x1∆x2 +
1

2
f ′′
x2
(x) (∆x2)

2

Si n = 1 , cela devient encore plus simple :

f(x+∆) ≈ f(x) + f ′(x)∆ +
1

2
f ′′(x)∆2.



Voici quelques remarques :

• Si ∆x est orthogonale à grad f(x) , on a f(x+∆x) ≈ f(x) + 1
2
d2f(x,∆x) , donc la

dépendance en ∆x ne disparâıt plus !

• Pour d’autres ∆x , l’approximation est maintenant plus précise. On dit que la formule
encadrée ci-dessus donne l’approximation d’ordre deux de f au voisinage de x .

• À noter qu’en tant que fonction de ∆x , la différentielle d’ordre deux d2f(x,∆x) est
une forme quadratique.

• Interprétation géométrique : si l’approximation d’ordre un correspond à la recherche de
la meilleure droite ou plan épousant le paysage de f en un point donné, l’approximation
d’ordre deux donne la meilleure approximation par parabolöıde/hyperbolöıde de f au
voisinage d’un certain x . Voici une illustration de cela :
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La surface jaune sur ce graphique est donnée par z = 3x2+2y2 . Il s’agit d’une approximation
d’ordre deux de z = (3x2+2y2)(1−x2/10− y2/20) . Remarquez comment les deux surfaces
se touchent en x = y = 0 , comment elles restent proches lorsque (x, y) ≈ (0, 0) , mais elles
divergent rapidement l’une de l’autre si l’on s’éloigne trop de x = y = 0 .

Hessian

Définition 2. Le Hessien d’une fonction f : Rn → R en un point x ∈ Rn est la matrice
H(x) ∈ Mn,n des dérivées partielles secondes :

(H(x))ij =
∂2f

∂xi ∂xj

.



De la même manière que nous avons utilisé le gradient pour représenter la différentielle
d’ordre un par

df(x) = (grad f(x))⊤dx,

on peut utiliser le Hessien pour représenter la différentielle d’ordre deux :

d2f(x) = (dx)⊤H(x) dx.

Cette formule met encore plus en évidence le fait que d2f(x) est une forme quadratique en
dx , comme mentionné ci-dessus.

Notez que H(x) est symétrique, car les dérivées partielles commutent :

(H(x))ij =
∂2f

∂xi ∂xj

=
∂2f

∂xj ∂xi

= (H(x))ij.

En combinant la description de df(x) en termes de grad f(x) et celle de d2f(x) en termes
de H(x) , on obtient

f(x+∆x) ≈ f(x) + (grad f(x))⊤∆x+
1

2
(∆x)⊤H(x)∆x.

Cette formule n’est qu’une autre représentation de l’approximation d’ordre deux de f . De
telles approximations sont appelées développements de Taylor (d’ordre un/deux). Il existe
aussi des développements de Taylor d’ordre supérieur (utilisant des dérivées d’ordre plus
élevé).

Exemple

Prenons n = 2 , considérons f(x, y) = xy définie pour x, y > 0 . Cherchons son développement
de Taylor au voisinage de x = 1 et y = 2 :

f(1, 2) = 12 = 1

f ′
x(1, 2) = yxy−1 |x=1,y=2= 2

f ′
y(1, 2) = xy lnx |x=1,y=2= 0

f ′′
xx(1, 2) = y(y − 1)xy−2 |x=1,y=2= 2

f ′′
xy(1, 2) = 1 · xy−1 + yxy−1 lnx |x=1,y=2= 1

f ′′
yy(1, 2) = xy(lnx)2 |x=1,y=2= 0.

Donc,

grad f(1, 2) =

(
2
0

)
, H(1, 2) =

(
2 1
1 0

)
.

On obtient donc la formule de Taylor d’ordre deux suivante :

f(1 + ∆x, 2 + ∆y) ≈ 1 + 2 ·∆x+ 0 ·∆y +
1

2
· 2(∆x)2 + 1 ·∆x∆y +

1

2
· 0 · (∆y)2.

On peut aussi l’écrire ainsi :

f(x, y) = 1 + 2 · (x− 1) + 0 · (y − 2) +
1

2
· 2(x− 1)2 + 1 · (x− 1) (y − 2) +

1

2
· 0 · (y − 2)2,



où x = 1 +∆x =⇒ ∆x = x− 1 et y = 2 +∆y =⇒ ∆y = y − 2 .

Par exemple, notre approximation donne

f(1.01, 2.01) ≈ 1.0202,

alors que la valeur exacte est

f(1.01, 2.01) = 1.020201508 . . .

Extrema libres (non contraints) : conditions du premier

ordre

Définition 3. Un point x0 ∈ Rn est un point de maximum local d’une fonction f : Rn → R
si f(x) ≤ f(x0) pour tout x suffisamment proche de x0 .

C’est un point de minimum local si f(x) ≥ f(x0) pour tout x suffisamment proche de x0 .

Rappelons que pour trouver les extrema locaux d’une fonction lisse d’une variable f : R →
R , on commence par chercher les points candidats à l’extremum, c’est-à-dire les x tels que

f ′(x) = 0.

Certains de ces points peuvent ne pas être extrémaux (il faut vérifier les conditions du second
ordre), mais si x est un extremum local, alors f ′(x) = 0 (la condition est nécessaire).

Si f : Rn → R est une fonction de plusieurs variables et que x est son minimum ou
maximum, alors en particulier c’est un extremum d’une fonction d’une variable g(xj) =
f(x) (toutes les autres variables sont fixées sauf une ; assurez-vous de bien comprendre cet
argument !). Donc g′(xj) = 0 , ou

g′(xj) =
∂f

∂xj

= 0.

Ainsi, toutes les dérivées partielles doivent être nulles en un point extrémal. On peut écrire
cela de façon concise :

f ′
xj
(x) = 0 pour tout j = 1, . . . , n,

ou en utilisant la notation du gradient :

grad f(x) = 0.

Formulons cela comme un théorème :

Théorème 1 (Conditions du premier ordre). Si x est un point de minimum local ou de
maximum local de f : Rn → R , alors

grad f(x) = 0.

Comme dans le cas univarié, il s’agit d’une condition nécessaire pour que x soit un ex-
tremum, mais pas suffisante.

Remarque 1. Considérons f(x) = x3 . Clairement, f ′(0) = 3x2 |x=0= 0 , mais x = 0 n’est
ni un minimum, ni un maximum de f .



Type d’extremum : conditions du second ordre

Si on a trouvé x0 tel que grad f(x0) = 0 , alors on a l’approximation suivante de f au
voisinage de ce point :

f(x) ≈ f(x0) +
1

2
(x− x0)

⊤H(x0) (x− x0).

Comment savoir si x0 est un minimum ou un maximum ? Peut-il n’être ni l’un ni l’autre ?

Remarquons que f(x) ≥ f(x0) pour x ≈ x0 si

(x− x0)
⊤H(x0) (x− x0) ≥ 0.

Si x est un minimum local, cette condition doit être vérifiée pour tout x ≈ x0 , ce qui par
définition signifie que H(x0) est semi-définie positive.

De même, si x est un point de maximum local, alors f(x) ≤ f(x0) pour tout x ≈ x0 , ce
qui est équivalent à H(x0) étant semi-définie négative.

Ce sont encore des conditions nécessaires, mais qu’en est-il des conditions suffisantes ? Plus
précisément, si on a trouvé x0 tel que grad f(x0) = 0 et H(x0) est semi-définie positive,
peut-on conclure que f admet un minimum en ce point ? La réponse est : oui, si H(x0)
est définie positive (strictement).

Théorème 2. Si x0 est un point tel que grad f(x0) = 0 et H(x0) est définie positive,
alors f admet un minimum local en ce point.

Si x0 est un point tel que grad f(x0) = 0 et H(x0) est définie négative, alors f admet
un maximum local en ce point.

Si x0 est un point tel que grad f(x0) = 0 et H(x0) est indéfinie, alors f n’admet ni
maximum local, ni minimum local en ce point.

Si x0 est un point tel que grad f(x0) = 0 et H(x0) est semi-définie (positive ou
négative), une analyse supplémentaire est nécessaire pour conclure s’il s’agit d’un maxi-
mum, d’un minimum ou d’aucun des deux.

Remarque 2. Si H(x0) est seulement semi-définie, vérifier si x0 est un extremum local
demande une analyse plus poussée. Reprenons la remarque précédente : si f(x) = x3 , son
Hessien est une matrice 1 × 1 identifiée à sa dérivée seconde : H(x) = f ′′(x) = 6x . En
zéro, ce Hessien est nul : H(0) = 0 , donc à la fois ≥ 0 et ≤ 0 . Cependant, x0 = 0 n’est
clairement pas un extremum local de f .

Considérons un autre exemple : f(x) = x4 . Dans ce cas H(0) = 0 , mais on a bien un
minimum local en x0 = 0 . Ces exemples montrent qu’il faut des développements plus précis
pour vérifier l’existence d’un extremum en un point où le Hessien est semi-défini.



Remarque 3. Rappelons que dire que H(x0) est d’un certain type (définie positive (semi-
)/définie négative (semi-)/indéfinie) revient à dire que la forme quadratique correspondante
d2f(x0) est de ce type. C’est pourquoi on parle souvent de d2f(x0) comme étant d’un
certain type.

Remarque 4. Géométriquement, un Hessien définie positive (négative) signifie que la fonc-
tion f ressemble à un parabolöıde ouvert vers le haut (bas) au voisinage de x0 . Si H(x0)
est indéfinie, f ressemble à un hyperbolöıde près de x0 . Dans ce cas, on dit que f admet
un point selle en x0 .

Example

Soit f(x, y) = xe−x2−y2 . Alors

f ′
x = 0 =⇒ e−x2−y2 − 2x2e−x2−y2 = 0 =⇒ x = ± 1√

2

et de même
f ′
y = 0 =⇒ −2ye−x2−y2 = 0 =⇒ y = 0.

On a donc deux points candidats à l’extremum : ( 1√
2
, 0) et (− 1√

2
, 0) . Vérifions leur nature :

H(x) =

(
f ′′
xx f ′′

xy

f ′′
xy f ′′

yy

)
= e−x2−y2

(
2x(2x2 − 3) 2y(2x2 − 1)
2y(2x2 − 1) 2x(2y2 − 1)

)
.

Au point ( 1√
2
, 0) on a

H

(
1√
2
, 0

)
= e−

1
2

(
−4√
2

0

0 − 2√
2

)
.

Cette matrice est définie négative, donc ( 1√
2
, 0) est un maximum local. Ensuite, au point

(− 1√
2
, 0) on a

H

(
− 1√

2
, 0

)
= e−

1
2

(
4√
2

0

0 2√
2

)
.

Comme cette matrice est définie positive, (− 1√
2
, 0) est un minimum local de f .


