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Linearity of gradient and Hessian and chain rule

Let f, g : Rn → R be some functions and let Hf (x) denote its Hessian.

Since the derivative is linear ( (f +g)′ = f ′+g′ ), we have the following rule, which simplifies
finding gradients and Hessians:

grad(f(x) + g(x)) = grad f(x) + grad g(x)

Hf+g(x) = Hf (x) +Hg(x)

If h : R → R is another function and we consider the composition h(f(x)) , then by the
usual chain rule (h(f(x)))′ = h′(f(x)) f ′(x) we have that the same holds for the gradient:

gradh(f(x)) = h′(f(x)) grad f(x).

These rules are simple, but very useful.

Example 1. grad(f(x))4 = 4f(x)3 grad f(x) .

Gradient and Hessian of a quadratic function

Consider A ∈ M2,2 symmetric, b ∈ R2 and the quadratic function

f(x1, x2) = x⊤Ax+ b⊤x+ c = a11x
2
1 + 2a12x1x2 + a22x

2
2 + b1x1 + b2x2 + c.

Then

grad f(x1, x2) =

(
f ′
x1

f ′
x2

)
=

(
2a11x1 + 2a12x2 + b1
2a12x1 + 2a22x2 + b2

)
.

Let us note that this may be written as

grad f(x1, x2) = 2

(
a11 a12
a12 a22

)(
x1

x2

)
+

(
b1
b2

)
= 2Ax+ b.

As it turns out, the exact same formulas hold in higher dimensions:

Theorem 1. If A ∈ Mn,n and b ∈ Rn , we have

gradx⊤Ax = 2Ax and grad b⊤x = b.



Proof. We have

gradx⊤Ax = grad
n∑

i,j=1

aijxixj =
n∑

i,j=1

aij gradxixj,

so we only need to calculate gradxixj :

gradxixj = xi ej + xj ei,

where ei is a vector of zeroes with 1 at ith row. Hence,

gradx⊤Ax =
n∑

i,j=1

aij(xi ej + xj ei) =
n∑

i,j=1

aij xi ej +
n∑

i,j=1

aij xj ei.

Since aij = aji by symmetry of A , we have

n∑
i,j=1

aji xi ej =
n∑

i,j=1

aij xj ei = Ax,

which concludes the proof of the first claim. The second claim follows similarly:

grad b⊤x = grad
n∑

i=1

bixi =
n∑

i=1

bi gradxi =
n∑

i=1

biei = b,

where we used that gradxi = ei .

Therefore,

grad(x⊤Ax+ b⊤x+ c) = 2Ax+ b.

We are going to use this later.

Remark 1. Compare this with d
dx
(ax2 + bx+ c) = 2ax+ b .

Next, we want to calculate the Hessian of the quadratic function. Since the Hessian is linear
and the second derivatives of b⊤x+ c are clearly zero, we only need to find the Hessian of
x⊤Ax . A similar calculation gives

Hf (x) = 2A.

Therefore, we know how to find both gradient and Hessian of a quadratic function!

Linear regression

Consider the following problem: we have some points xi and yi , i = 1, . . . , n obtained from
some data. We plot these points and see that they all lie near some line. How do we find
the best line that fits these points?

A line on the plane may be expressed by the following equation:

y = ax+ b.



We cannot just assume that yi = axi + b for all i = 1, . . . , n and try to solve for a, b ,
because this would be too many equations. That is, unless they all lie exactly on the same
line to begin with.

What we can do instead is to assume that yi = axi + b+ εi , where εi are some errors. Now
we can find a and b , which minimize the full error.

But what do we mean by full error? There are many ways to answer, the most standard is
given by the sum of squared errors:

R =
n∑

i=1

ε2i .

Plugging εi = yi − axi − b into this formula, we see that R is a function of a and b :

R(a, b) =
n∑

i=1

(yi − axi − b)2.

We can now minimize this function with respect to a and b and obtain the so-called least
square regression line.

Remark 2. This is by far not the only way to define what “best line” means in this context.
One equally interesting alternative is to minimize

L(a, b) =
n∑

i=1

|εi| =
n∑

i=1

|yi − axi − b|.

This is known as robust linear regression. Unfortunately, |x| is non-differentiable, so mini-
mization in this case becomes more involved.

To minimize R , we first compute its gradient:

gradR(a, b) =

(
Ra

Rb

)
=

(
−2
∑n

i=1(yi − axi − b)xi

−2
∑n

i=1(yi − axi − b)

)
,

set it equal to zero and obtain two equations:

n∑
i=1

yixi − a
n∑

i=1

x2
i − b

n∑
i=1

xi = 0 and
n∑

i=1

yi − a
n∑

i=1

xi − bn = 0.

Denoting

ρ =
1

n

n∑
i=1

yixi, s2 =
1

n

n∑
i=1

x2
i , µx =

1

n

n∑
i=1

xi, µy =
1

n

n∑
i=1

yi,

we find that the equations above may be rewritten as{
ρ− as2 − bµx = 0,

µy − aµx − b = 0.



Solving this system, we obtain

a =
ρ− µxµy

s2 − µ2
x

, b = µy + aµx.

If we plug in ρ, µx, µy and s2 , we shall obtain

a =

1

n

n∑
i=1

yixi −
1

n2

n∑
i=1

xi

n∑
j=1

yj

1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

We can also shuffle this formula a bit and rewrite it in yet another form:

a =

n∑
i=1

(xi − µx)(yi − µy)

n∑
i=1

(xi − µx)
2

.

Recall, however, that these are candidate points, and we need to check that they indeed
minimize R . To this end, we compute the Hessian of R :

HR(x) =

(
2
∑n

i=1 x
2
i 2

∑
i=1 xi

2
∑n

i=1 xi 2n

)
.

Clearly,

2
n∑

i=1

x2
i > 0,

so we need to check the determinant and apply Sylvester’s law of intertia. We have

detHR(x) = 4n
n∑

i=1

x2
i − 4

(∑
i=1

xi

)2

= 4n2

 1

n

n∑
i=1

x2
i −

(
1

n2

n∑
i=1

xi

)2


= 4n
n∑

i=1

(xi − µx)
2 > 0.

Remark 3. Above, we used the following calculation:∑
i

(xi − µx)
2 =

∑
i

(x2
i − 2xiµx + µ2

x)

=
∑
i

x2
i − 2µx

∑
i

xi + nµ2
x

=
∑
i

x2
i − 2nµ2

x + nµ2
x

=
∑
i

x2
i − nµ2

x.



Linear regression in matrix form

Let us solve the same problem using matrix notation. We will then see that this approach
allows to do much more general kinds of regression!

Let yi and xi , i = 1, . . . , n be our data points. Denote

y =


y1
y2
...
yn

 , X =


1 x1

1 x2
...

...
1 xn

 , β =

(
b
a

)
, ε = y −Xβ.

Note that X is a n × 2 matrix. The same function R as above in this notation may be
written as

R(β) = ε⊤ε.

Plugging in the definition of ε , we obtain

R(β) = (y −Xβ)⊤(y −Xβ) = y⊤y − β⊤X⊤y − y⊤Xβ + β⊤X⊤Xβ.

Since y⊤Xβ = β⊤X⊤y (we can always transpose a number!), we have

R(β) = β⊤Aβ − 2 b⊤β + c,

where A = X⊤X , b = X⊤y and c = y⊤y .

By the theorem in the beginning of this lecture, the gradient of R is given by

gradR(β) = 2Aβ − 2b.

Setting it equal zero, we find that β satisfies

Aβ − b = 0.

Therefore,
β = A−1b.

It remains to plug in the formulas for A and b to obtain

β = (X⊤X)−1X⊤y.

This formula is called the normal equation of linear regression, it gives the linear regression
coefficients directly in terms of the original data points!

Remark 4. Note that if y ∈ Rn and X ∈ Mn,2 , then X⊤ ∈ M2,n , hence X⊤y ∈ R2 and
X⊤X ∈ M2,2 , so all products are well-defined.

The matrix X⊤X is strictly positive definite, which means that it does not have zero eigen-
values, which means that it is invertible!

Remark 5 (Important). Note that we cannot simplify (X⊤X)−1X⊤ using (AB)−1 =
B−1A−1 . Why? Because the last formula is only true if A and B are invertible. In
particular, they must be square! Note that although X⊤X is a square matrix (2 × 2) , X
and X⊤ are not (they are n× 2 and 2× n correspondingly). Hence, their inverses do not
even make sense!



How to use the normal equation in practice?

Having derived the normal equation, we can forget about its derivation and just use it as
follows:

• Given data points xi , yi , i = 1, . . . , n , construct a vector y and a matrix X as
above.

• Calculate β = (X⊤X)−1X⊤y .

• Now the best line approximating our data points is given by y = β1 + β2x .

Generalized linear regression

What if we want to find the best curve, instead of line, approximating our dataset xi , yi ?
For example, we can find a polynomial curve approximating our data:

yi ≈ β0 + β1xi + β2x
2
i + · · ·+ βpx

p
i

using the same idea! To this end, we build the approximation error

R(β) =
n∑

i=1

(yi − β0 − β1xi − · · · − βpx
p
i )

2

and minimize it with respect to β . This becomes much easier in the matrix notation. Let

y =


y1
y2
...
yn

 , X =


1 x1 x2

1 . . . xp
1

1 x2 x2
2 . . . xp

2
...

...
...

...
1 xn x2

n . . . xp
n

 , β =


β0

β1
...
βp

 .

With this notation, R becomes

R(β) = (y −Xβ)⊤(y −Xβ).

Note that the problem is significantly more general (polynomial instead of line), but the
function we need to optimize is exactly the same!

Therefore, we can immediately write down the solution of this minimization problem, that
is, the normal equation:

β = (X⊤X)−1X⊤y.

This equation now tells us that the best polynomial curve approximating our data is given
by

y = β0 + β1x+ · · ·+ βpx
p.



Remark 6. In fact, there is nothing special about polynomials. We can approximate our
data by a linear combination of any functions:

yi ≈
p∑

k=1

βkφk(xi).

To this end, we just change the definition of the matrix X to

X =


φ0(x1) φ1(x1) . . . φp(x1)
φ0(x2) φ1(x2) . . . φp(x2)

...
...

...
...

φ0(xn) φ1(xn) . . . φp(xn)

 ,

and use the same normal equation with this new matrix X . One neat example is to approx-
imate seasonal data with periodic functions:

yi ≈ β0 + β1 cos

(
xi

T1

)
+ β2 cos

(
xi

T2

)
,

where xi is interpreted as time and T1, T2 are two different time scales.

Another natural extension

Another natural extension of the previous method arises when we want to model the effect
of many factors xi , zi , ti , . . . on yi . Geometrically, this means that we are trying to find
the best hyperplane in approximating our points.

Let us assume that yi ≈ β0 + β1xi + β2zi (only two factors). Then the error of this approx-
imation is

R(β) =
n∑

i=1

(yi − β0 − β1xi − β2zi)
2,

which may again be written in the same way with the only difference that X is now

X =


1 x1 z1
1 x2 z2
...

...
...

1 xn zn

 .

Everything else in the model remains the same, so the resulting β is given again by the
normal equation.


