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Fiche de théorie 11

Linéarité du gradient et du hessien et regle de chaine
Soit f,g:R™ — R des fonctions et soit H(x) désigner son Hessien.

Puisque la dérivée est linéaire ( (f+g)' = f'+¢' ), nous avons la régle suivante, qui simplifie
la recherche de gradients et de Hessians :

grad(f(z) + g(x)) = grad f(x) + grad g(x)
Hf+g(m) = Hf(m) + Hg(a’)

Si h:R — R est une autre fonction et que nous considérons la composition h(f(x)), alors
par la regle de chaine habituelle (h(f(x))) = h'(f(x)) f'(x) nous avons que la méme chose
vaut pour le gradient :

grad h(f(x)) = I'(f(z)) grad f(z).

Ces regles sont simples, mais tres utiles.

Exemple 1. grad(f(z))* = 4f(x)? grad f(x) .

Gradient et Hessien d’une fonction quadratique

Considérons A € My, symétrique, b € R? et la quadratique fonction
flzy,29) =2 Az + b @ + ¢ = a112? + 20191 Ty + ag972 + by + bos + .
Alors /
- 2a1171 + 2a1272 + b
grad f(z1, 22) = ( /1> _ ( 1171 1202 1).

za 2@12$1 + 2&22$2 + bg

Notons que ceci peut étre écrit comme

o a11 Q12 T by o
grad f(xy,z9) =2 <a12 CL22> (9@) + <b2> =2Ax +b.

En fait, les mémes formules valent dans les dimensions supérieures :

Théoréme 1. Si A€ M,,, et b € R", nous avons

grade' Ax = 24x and gradb'x = b.



Proof. We have
grad x Az = grad Z A;jTT; = Z a;j grad x;x;,

ij=1 ij=1
so we only need to calculate grad z;z; :
gradz;z; = x;€; +x; €,

where e; is a vector of zeroes with 1 at i*" row. Hence,

n

n n
T
grad:c Ax = E CLZ‘j(SBZ‘ €; + Z; 6,’) = E Q5 T; €5 + E Q5 Tj €;.

ij=1 ij=1 ij=1
Since a;; = aj; by symmetry of A, we have

n n

E Cljz' ZT; ej = E CLZ'j l’j e, = Am,

ij=1 ij=1

which concludes the proof of the first claim. The second claim follows similarly:

grad b'x = gradi: b,x; = Zn: b; grad x; = z”: b;e; = b,
i=1 i=1

=1

where we used that gradz; = e;. O

Donc,

grad(x" Az +b'x 4 ¢) = 2Ax + b.

Nous allons utiliser ceci plus tard.
Remarque 1. Compare this with %(aﬂc2 +br+c)=2ar+b.
Ensuite, nous voulons calculer le Hessien de la fonction quadratique. Puisque le Hessien est

linéaire et les dérivées secondes de b'x + ¢ sont clairement nulles, nous avons seulement
besoin de trouver le Hessien de " Az . UNE calcul similaire donne

Par conséquent, nous savons comment trouver a la fois le gradient et le Hessien d'une fonc-
tion !

Régression linéaire

Considérons le probléme suivant : nous avons des points z; et y;, ¢ = 1,...,n obtenus a
partir de certaines données. Nous tracons ces points et voyons qu’ils se situent pres d’une
droite. Comment trouver la meilleure droite qui correspond a ces points ?

Une droite sur le plan peut étre exprimée par ’équation suivante :

y = ax +b.



Nous ne pouvons pas simplement supposer que y; = ax;+b pour tout ¢ = 1,...,n et essayer
de résoudre a,b, car ce serait trop d’équations. Autrement dit, & moins qu’ils ne se situent
tous exactement sur la méme ligne pour commencer.

Ce que nous pouvons faire a la place est de supposer que y; = ax; + b+ ¢;, ou &; sont des
erreurs. Maintenant, nous pouvons trouver a et b, qui minimisent I’erreur totale.

Mais qu’entendons-nous par erreur totale 7 Il existe de nombreuses facons d’y répondre, le
plus standard est donné par la somme des erreurs au carré :

n
R = E £7.
i=1

En branchant ¢; = y; — ax; — b dans cette formule, nous voyons que R est une fonction de
a et b :

n

R(a,b) =) (yi — ax; — b)*.

=1

Nous pouvons maintenant minimiser cette fonction par rapport & a et b et obtenir la droite
dite de régression des moindres carrés.

J.

Remarque 2. Ceci est de loin la seule facon de définir ce que “ meilleure ligne 7 signifie
dans ce contexte. Une autre alternative tout aussi intéressante consiste a minimiser

L(a,b) = Z |&i] = Z ly; — ax; — b|.
=1 =1

Ceci est connu comme régression linéaire robuste. Malheureusement, |x| est non différentiable,
donc la minimisation dans ce cas devient plus compleze.

Pour minimiser R, nous calculons d’abord son gradient :

o = (1) = (3500 )

égalons-le a zéro et obtenons deux équations :

n

iyiwi_azx?_bi$i:0 and zn:yi—ai:xi—bn:&
i=1 i=1 i=1 i=1

=1

En notant

n n n n
1 s 1 9 1 1 A
pP=— YiZi, s = — X, He = — Ty, H’y - Yi,s
=1 =1 =1 =1
nous trouvons que les équations ci-dessus peuvent étre réécrites comme

p—as®* — bu, =0,
[y — afty —b=0.



En résolvant ce systeme, nous obtenons

p— [izfl
:T/ﬂy’ b= py + aps.

T

a

Si nous branchons p, p., p, et s*, nous obtiendrons

1 n 1 n n
Ezyixi_ﬁzxizyj
=l =1 j=1
- 2

1 < 1«

(i

Nous pouvons aussi remanier un peu cette formule et la réécrire sous une autre forme :

a

n

> (@i — ) (i — 11y)

=1

Rappelons toutefois qu’il s’agit de points candidats, et nous devons vérifier qu’ils minimisent
effectivement R. A cette fin, nous calculons le Hessien de R :

_ (2 Z?:l xf 2 Zi:l i
Hl) = (2 2imwm 2 )7

Clairement,
n
2 Z x? >0,
i=1

nous devons donc vérifier le déterminant et appliquer la loi d’inertie de Sylvester. Nous
avons

. 2
det Hg(x) :4n2x?—4 <Z$z>
i=1 i=1
n n 2
_4 2 lz 2_ izaj
e i=1 " n® 5 Z

=4n Z(Z‘Z — p12)* > 0.



Remarque 3. Cli-dessus, nous avons utilisé le calcul suivant :

7

Yo Y

=} = 2l + il

7
_ E 2 2
7

Régression linéaire sous forme matricielle

Résolvons le méme probleme en utilisant la notation matricielle. Nous verrons alors que
cette approche permet de réaliser des types de régression beaucoup plus généraux !

Soit y; et x;, 1 =1,...,n nos points de données. Notons
() L x
Y= yf , X = 1 :5:2 ; 62(2), e=y—-XB.
Y | a,

Notons que X est une matrice n x 2. La méme fonction R comme ci-dessus dans cette
notation peut étre écrite comme
R(B)=¢'e.
En branchant la définition de €, nous obtenons
RB)=(y—-XB) (y-XB) =y y-B'X'y—y' XB+B X'XB.
Puisque y" X8 = B" X"y (nous pouvons toujours transposer un nombre !), nous avons
R(B)=pBTAB-2b'B +¢,
ol A=X"X,b=X"yetc=y'y.

Selon le théoreme au début de ce cours, le gradient de R est donné par
grad R(3) = 2A8 — 2b.
En I’égalant a zéro, nous constatons que (3 satisfait
AB—-b=0.

Donc,
B8 =A""b.

Il reste a brancher les formules pour A et b pour obtenir

B=(X"X)"'X"y.

Cette formule est appelée I’équation normale de la régression linéaire, elle donne les coeffi-
cients de régression linéaire directement en fonction des données d’origine points !




Remarque 4. Note that if y € R and X € M, 5, then X" € My, , hence X'y € R?
and XX € My, so all products are well-defined.

The matriz X "X is strictly positive definite, which means that it does not have zero eigen-
values, which means that it is invertible!

Remarque 5 (Important). Note that we cannot simplify (X' X)X T using (AB)™! =
B7'AY. Why? Because the last formula is only true if A and B are invertible. In
particular, they must be square! Note that although XX is a square matriz (2 x 2), X
and X are not (they are n x 2 and 2 x n correspondingly). Hence, their inverses do not
even make sense!

Comment utiliser ’équation normale en pratique ?

Apres avoir dérivé I'équation normale, nous pouvons oublier sa dérivation et simplement
I'utiliser comme suit :

e Etant donné les points de données z;, vy;, ¢ = 1,...,n, construire un vecteur y et
une matrice X comme ci-dessus.

e Calculer 8= (XTX)"'X"y.

e Maintenant, la meilleure droite qui approche nos points de données est donnée par
y= b1+ Bz

Régression linéaire généralisée

Que faire si nous voulons trouver la meilleure courbe, au lieu d’une droite, qui approxime
notre ensemble de données x;, y; 7 Par exemple, nous pouvons trouver une courbe poly-
nomiale approximant nos données :

?Jizﬁo+ﬁ1$i+5ﬂ?+"'+5ﬂf

en utilisant la méme idée ! A cette fin, nous construisons I'erreur d’approximation

n

R(B) =Y (i — fo— ozi — -+ = B?)?

=1

et minimisons-le par rapport a B. Ceci devient beaucoup plus facile dans la notation
matricielle. Soit

U 1 oz a3 ... af Bo

Y2 1 o 23 ... 25 B4
y= : ’ X = : : : : ’ 6 - :

Yn 1 =z, :L’,21 aP Bp

Avec cette notation, R devient

R(B)=(y—XB) (y— XP).



Notons que le probleme est nettement plus général (polynomial au lieu de droite), mais la
fonction que nous devons optimiser est exactement la méme !

Par conséquent, nous pouvons immédiatement écrire la solution de ce probleme de minimi-
sation, c’est-a-dire, I’équation normale :

B=(X"X)"'X"y.

Cette équation nous indique maintenant que la meilleure courbe polynomiale qui approxime
nos données est donnée par
y =B+ bir+- -+ Bpa’.

Remarque 6. In fact, there is nothing special about polynomials. We can approximate our
data by a linear combination of any functions:

p
Yi = Zﬁk@k(%)
k=1
To this end, we just change the definition of the matrix X to
wo(z1) p1(x1) ... pp(z1)
po(z2) @1(z2) ... wplz2)
X = . . . . )
wo(zn) w1(Tn) .. wp(Tn)

and use the same normal equation with this new matriz X . One neat example is to approz-
imate seasonal data with periodic functions:

ZT; ZT;
Yi = By + Py cos (i) + [32 cos <T2> )

where x; is interpreted as time and 11, Ty are two different time scales.
Une autre extension naturelle
Une autre extension naturelle de la méthode précédente se produit lorsque nous voulons

modéliser 'effet de nombreux facteurs z;, z, t;, ... sur y;. Géométriquement, cela
signifie que nous essayons de trouver le meilleur hyperplan pour approximer nos points.

Supposons que y; ~ [y + fi1x; + Poz; (seulement deux facteurs). Alors lerreur de cette

approximation est
n

R(B) = Z(yz — Bo — brxi — B221'>27
i=1
qui peut a nouveau étre écrite de la méme maniere avec la seule différence que X est
maintenant

1 Tr1T 21

1 T2 29
X =

1 =z, z,

Tout le reste dans le modele reste le méme, donc le B résultant est a nouveau donné par
I’équation normale.



