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Linéarité du gradient et du hessien et règle de châıne

Soit f, g : Rn → R des fonctions et soit Hf (x) désigner son Hessien.

Puisque la dérivée est linéaire ( (f + g)′ = f ′+ g′ ), nous avons la règle suivante, qui simplifie
la recherche de gradients et de Hessians :

grad(f(x) + g(x)) = grad f(x) + grad g(x)

Hf+g(x) = Hf (x) +Hg(x)

Si h : R → R est une autre fonction et que nous considérons la composition h(f(x)) , alors
par la règle de châıne habituelle (h(f(x)))′ = h′(f(x)) f ′(x) nous avons que la même chose
vaut pour le gradient :

gradh(f(x)) = h′(f(x)) grad f(x).

Ces règles sont simples, mais très utiles.

Exemple 1. grad(f(x))4 = 4f(x)3 grad f(x) .

Gradient et Hessien d’une fonction quadratique

Considérons A ∈ M2,2 symétrique, b ∈ R2 et la quadratique fonction

f(x1, x2) = x⊤Ax+ b⊤x+ c = a11x
2
1 + 2a12x1x2 + a22x

2
2 + b1x1 + b2x2 + c.

Alors

grad f(x1, x2) =

(
f ′
x1

f ′
x2

)
=

(
2a11x1 + 2a12x2 + b1
2a12x1 + 2a22x2 + b2

)
.

Notons que ceci peut être écrit comme

grad f(x1, x2) = 2

(
a11 a12
a12 a22

)(
x1

x2

)
+

(
b1
b2

)
= 2Ax+ b.

En fait, les mêmes formules valent dans les dimensions supérieures :

Théorème 1. Si A ∈ Mn,n et b ∈ Rn , nous avons

gradx⊤Ax = 2Ax and grad b⊤x = b.



Proof. We have

gradx⊤Ax = grad
n∑

i,j=1

aijxixj =
n∑

i,j=1

aij gradxixj,

so we only need to calculate gradxixj :

gradxixj = xi ej + xj ei,

where ei is a vector of zeroes with 1 at ith row. Hence,

gradx⊤Ax =
n∑

i,j=1

aij(xi ej + xj ei) =
n∑

i,j=1

aij xi ej +
n∑

i,j=1

aij xj ei.

Since aij = aji by symmetry of A , we have

n∑
i,j=1

aji xi ej =
n∑

i,j=1

aij xj ei = Ax,

which concludes the proof of the first claim. The second claim follows similarly:

grad b⊤x = grad
n∑

i=1

bixi =
n∑

i=1

bi gradxi =
n∑

i=1

biei = b,

where we used that gradxi = ei .

Donc,

grad(x⊤Ax+ b⊤x+ c) = 2Ax+ b.

Nous allons utiliser ceci plus tard.

Remarque 1. Compare this with d
dx
(ax2 + bx+ c) = 2ax+ b .

Ensuite, nous voulons calculer le Hessien de la fonction quadratique. Puisque le Hessien est
linéaire et les dérivées secondes de b⊤x + c sont clairement nulles, nous avons seulement
besoin de trouver le Hessien de x⊤Ax . UNE calcul similaire donne

Hf (x) = 2A.

Par conséquent, nous savons comment trouver à la fois le gradient et le Hessien d’une fonc-
tion !

Régression linéaire

Considérons le problème suivant : nous avons des points xi et yi , i = 1, . . . , n obtenus à
partir de certaines données. Nous traçons ces points et voyons qu’ils se situent près d’une
droite. Comment trouver la meilleure droite qui correspond à ces points ?

Une droite sur le plan peut être exprimée par l’équation suivante :

y = ax+ b.



Nous ne pouvons pas simplement supposer que yi = axi+b pour tout i = 1, . . . , n et essayer
de résoudre a, b , car ce serait trop d’équations. Autrement dit, à moins qu’ils ne se situent
tous exactement sur la même ligne pour commencer.

Ce que nous pouvons faire à la place est de supposer que yi = axi + b + εi , où εi sont des
erreurs. Maintenant, nous pouvons trouver a et b , qui minimisent l’erreur totale.

Mais qu’entendons-nous par erreur totale ? Il existe de nombreuses façons d’y répondre, le
plus standard est donné par la somme des erreurs au carré :

R =
n∑

i=1

ε2i .

En branchant εi = yi − axi − b dans cette formule, nous voyons que R est une fonction de
a et b :

R(a, b) =
n∑

i=1

(yi − axi − b)2.

Nous pouvons maintenant minimiser cette fonction par rapport à a et b et obtenir la droite
dite de régression des moindres carrés.

Remarque 2. Ceci est de loin la seule façon de définir ce que “ meilleure ligne ” signifie
dans ce contexte. Une autre alternative tout aussi intéressante consiste à minimiser

L(a, b) =
n∑

i=1

|εi| =
n∑

i=1

|yi − axi − b|.

Ceci est connu comme régression linéaire robuste. Malheureusement, |x| est non différentiable,
donc la minimisation dans ce cas devient plus complexe.

Pour minimiser R , nous calculons d’abord son gradient :

gradR(a, b) =

(
Ra

Rb

)
=

(
−2
∑n

i=1(yi − axi − b)xi

−2
∑n

i=1(yi − axi − b)

)
,

égalons-le à zéro et obtenons deux équations :

n∑
i=1

yixi − a
n∑

i=1

x2
i − b

n∑
i=1

xi = 0 and
n∑

i=1

yi − a
n∑

i=1

xi − bn = 0.

En notant

ρ =
1

n

n∑
i=1

yixi, s2 =
1

n

n∑
i=1

x2
i , µx =

1

n

n∑
i=1

xi, µy =
1

n

n∑
i=1

yi,

nous trouvons que les équations ci-dessus peuvent être réécrites comme{
ρ− as2 − bµx = 0,

µy − aµx − b = 0.



En résolvant ce système, nous obtenons

a =
ρ− µxµy

s2 − µ2
x

, b = µy + aµx.

Si nous branchons ρ, µx, µy et s2 , nous obtiendrons

a =

1

n

n∑
i=1

yixi −
1

n2

n∑
i=1

xi

n∑
j=1

yj

1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

Nous pouvons aussi remanier un peu cette formule et la réécrire sous une autre forme :

a =

n∑
i=1

(xi − µx)(yi − µy)

n∑
i=1

(xi − µx)
2

.

Rappelons toutefois qu’il s’agit de points candidats, et nous devons vérifier qu’ils minimisent

effectivement R . À cette fin, nous calculons le Hessien de R :

HR(x) =

(
2
∑n

i=1 x
2
i 2

∑
i=1 xi

2
∑n

i=1 xi 2n

)
.

Clairement,

2
n∑

i=1

x2
i > 0,

nous devons donc vérifier le déterminant et appliquer la loi d’inertie de Sylvester. Nous
avons

detHR(x) = 4n
n∑

i=1

x2
i − 4

(∑
i=1

xi

)2

= 4n2

 1

n

n∑
i=1

x2
i −

(
1

n2

n∑
i=1

xi

)2


= 4n
n∑

i=1

(xi − µx)
2 > 0.



Remarque 3. Ci-dessus, nous avons utilisé le calcul suivant :∑
i

(xi − µx)
2 =

∑
i

(x2
i − 2xiµx + µ2

x)

=
∑
i

x2
i − 2µx

∑
i

xi + nµ2
x

=
∑
i

x2
i − 2nµ2

x + nµ2
x

=
∑
i

x2
i − nµ2

x.

Régression linéaire sous forme matricielle

Résolvons le même problème en utilisant la notation matricielle. Nous verrons alors que
cette approche permet de réaliser des types de régression beaucoup plus généraux !

Soit yi et xi , i = 1, . . . , n nos points de données. Notons

y =


y1
y2
...
yn

 , X =


1 x1

1 x2
...

...
1 xn

 , β =

(
b
a

)
, ε = y −Xβ.

Notons que X est une matrice n × 2 . La même fonction R comme ci-dessus dans cette
notation peut être écrite comme

R(β) = ε⊤ε.

En branchant la définition de ε , nous obtenons

R(β) = (y −Xβ)⊤(y −Xβ) = y⊤y − β⊤X⊤y − y⊤Xβ + β⊤X⊤Xβ.

Puisque y⊤Xβ = β⊤X⊤y (nous pouvons toujours transposer un nombre !), nous avons

R(β) = β⊤Aβ − 2 b⊤β + c,

où A = X⊤X , b = X⊤y et c = y⊤y .

Selon le théorème au début de ce cours, le gradient de R est donné par

gradR(β) = 2Aβ − 2b.

En l’égalant à zéro, nous constatons que β satisfait

Aβ − b = 0.

Donc,
β = A−1b.

Il reste à brancher les formules pour A et b pour obtenir

β = (X⊤X)−1X⊤y.

Cette formule est appelée l’équation normale de la régression linéaire, elle donne les coeffi-
cients de régression linéaire directement en fonction des données d’origine points !



Remarque 4. Note that if y ∈ Rn and X ∈ Mn,2 , then X⊤ ∈ M2,n , hence X⊤y ∈ R2

and X⊤X ∈ M2,2 , so all products are well-defined.

The matrix X⊤X is strictly positive definite, which means that it does not have zero eigen-
values, which means that it is invertible!

Remarque 5 (Important). Note that we cannot simplify (X⊤X)−1X⊤ using (AB)−1 =
B−1A−1 . Why? Because the last formula is only true if A and B are invertible. In
particular, they must be square! Note that although X⊤X is a square matrix (2 × 2) , X
and X⊤ are not (they are n× 2 and 2× n correspondingly). Hence, their inverses do not
even make sense!

Comment utiliser l’équation normale en pratique ?

Après avoir dérivé l’équation normale, nous pouvons oublier sa dérivation et simplement
l’utiliser comme suit :

• Étant donné les points de données xi , yi , i = 1, . . . , n , construire un vecteur y et
une matrice X comme ci-dessus.

• Calculer β = (X⊤X)−1X⊤y .

• Maintenant, la meilleure droite qui approche nos points de données est donnée par
y = β1 + β2x .

Régression linéaire généralisée

Que faire si nous voulons trouver la meilleure courbe, au lieu d’une droite, qui approxime
notre ensemble de données xi , yi ? Par exemple, nous pouvons trouver une courbe poly-
nomiale approximant nos données :

yi ≈ β0 + β1xi + β2x
2
i + · · ·+ βpx

p
i

en utilisant la même idée ! À cette fin, nous construisons l’erreur d’approximation

R(β) =
n∑

i=1

(yi − β0 − β1xi − · · · − βpx
p
i )

2

et minimisons-le par rapport à β . Ceci devient beaucoup plus facile dans la notation
matricielle. Soit

y =


y1
y2
...
yn

 , X =


1 x1 x2

1 . . . xp
1

1 x2 x2
2 . . . xp

2
...

...
...

...
1 xn x2

n . . . xp
n

 , β =


β0

β1
...
βp

 .

Avec cette notation, R devient

R(β) = (y −Xβ)⊤(y −Xβ).



Notons que le problème est nettement plus général (polynomial au lieu de droite), mais la
fonction que nous devons optimiser est exactement la même !

Par conséquent, nous pouvons immédiatement écrire la solution de ce problème de minimi-
sation, c’est-à-dire, l’équation normale :

β = (X⊤X)−1X⊤y.

Cette équation nous indique maintenant que la meilleure courbe polynomiale qui approxime
nos données est donnée par

y = β0 + β1x+ · · ·+ βpx
p.

Remarque 6. In fact, there is nothing special about polynomials. We can approximate our
data by a linear combination of any functions:

yi ≈
p∑

k=1

βkφk(xi).

To this end, we just change the definition of the matrix X to

X =


φ0(x1) φ1(x1) . . . φp(x1)
φ0(x2) φ1(x2) . . . φp(x2)

...
...

...
...

φ0(xn) φ1(xn) . . . φp(xn)

 ,

and use the same normal equation with this new matrix X . One neat example is to approx-
imate seasonal data with periodic functions:

yi ≈ β0 + β1 cos

(
xi

T1

)
+ β2 cos

(
xi

T2

)
,

where xi is interpreted as time and T1, T2 are two different time scales.

Une autre extension naturelle

Une autre extension naturelle de la méthode précédente se produit lorsque nous voulons
modéliser l’effet de nombreux facteurs xi , zi , ti , . . . sur yi . Géométriquement, cela
signifie que nous essayons de trouver le meilleur hyperplan pour approximer nos points.

Supposons que yi ≈ β0 + β1xi + β2zi (seulement deux facteurs). Alors l’erreur de cette
approximation est

R(β) =
n∑

i=1

(yi − β0 − β1xi − β2zi)
2,

qui peut à nouveau être écrite de la même manière avec la seule différence que X est
maintenant

X =


1 x1 z1
1 x2 z2
...

...
...

1 xn zn

 .

Tout le reste dans le modèle reste le même, donc le β résultant est à nouveau donné par
l’équation normale.


