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Extrema sous contraintes

Soient f:R"™ - R et g:R"” — R deux fonctions.

Définition 1. On dit qu’un point xy € R™ est un mazximum (ou minimum) local d’une
fonction sous contrainte g(x) =0, si f(xo) > f(x) (ou f(xo) < f(x) ) pour tout = ~ x
tel que g(x) =0.

Voici quelques remarques :

e L’opposé de “sous contrainte” est “libre” : extrema libre signifie “extrema sans con-
traintes”, c’est-a-dire, sur '’ensemble de R"™.

e Notez la différence avec la notion de maximum/minimum local : 1a, on doit comparer
f(xp) avec les valeurs de f en tous les points voisins @, tandis qu’ici f(xo) est
seulement comparé avec les points x, ou g(x) = 0 est satisfaite.

e En particulier, &y doit lui-méme satisfaire g(xo) =0.
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e Pourquoi zéro dans “g(x) = 0” 7 Juste une convention ! Toute contrainte de la
forme g(x) = ¢ peut étre réécrite comme g(x) = 0 avec une nouvelle fonction g(x) =

g(x) —c.

e En d’autres termes, nous étudions les extrema sous contraintes d’égalité. Il existe
également une théorie similaire des extrema sous contraintes d’inégalité g(x) > 0,
mais nous ne la traiterons pas dans ce cours.

e Interprétation géométrique : puisque G = {x : g(x) = 0} C R™ est une certaine
surface, les extrema sous contraintes de f sont juste les extrema libres de f restreints
a cette surface. C’est-a-dire, les extrema libres de f: G — R au lieude f:R" — R.

Des exemples naturels de problemes d’extrema sous contraintes proviennent de la théorie de
I'utilité, ot nous avons généralement des contraintes budgétaires (la quantité d’argent est
limitée).

Un autre exemple naturel : maximiser l'aire d’un rectangle si son périmetre est fixe. Ou
maximiser le volume d’une boite si sa surface est fixe.

Ci-dessous, nous allons discuter deux approches distinctes pour résoudre ce probleme :

e méthode de substitution : traiter la contrainte g(x) = 0 comme une équation, &
I’aide de laquelle nous pouvons exprimer certaines variables en fonction des autres et
I'injecter dans f ; schématiquement,

solve

glz1,20) =0 =2 25 = h(z;) = optimize new function f(z;) = f(zy, h(z1)).



e méthode des multiplicateurs de Lagrange : construire une nouvelle fonction L
de m+1 variables (en introduisant une variable artificielle), appelée le Lagrangien, de
sorte que les extrema sous contraintes de f soient les extrema libres de L, et optimiser
L comme avant.

Rappel sur les extrema libres

Rappelez-vous que @, est un point extremal candidat de f si grad f(xy) = 0. Pour
déterminer si @ est bien un point extremal, nous devons vérifier le type du différentiel du
second ordre d?f(xy) ou du Hessien H(x) .

Exemple

Dans cette section, nous utilisons la méthode de substitution pour résoudre le probleme
suivant : maximiser

B(q1,92) = 55¢1 + 70qy — 29% —3q1G2 — 36]%

sous contrainte
¢ +q2—13=0.

Tout d’abord, nous résolvons la contrainte pour 'une des deux variables :
g2 =13 —q,
puis nous l'injectons dans B :
B(qi) = B(q1,13 = @1) = 55q1 + 70(13 — ¢1) — 247 — 3q1(13 — 1) — 3(13 — q1)*
= 403 + 24q1 — 247.

Ensuite, nous maximisons B comme d’habitude :

B'(ql):O — 24—-4¢; =0 = q; = 6.

Il reste a trouver ¢s :
=13-qa="

Puisque B” = —4 < 0, cette solution est bien un maximum.

Conditions nécessaires pour un extremum sous contraintes

Le théoreme suivant est donné sans preuve :

Théoréme 1. Si xy est un point extremum de f sous contrainte g(x) =0, alors grad f
et grad g sont codirectionnels ou proportionnels. C’est-a-dire, il existe un nombre A € R
tel que

grad f(@o) = A grad g(ao).



o grad f(xy) = A grad g(xg) signifie que les deux vecteurs pointent dans la méme direc-
tion si A > 0 et qu'’ils pointent dans les directions opposées si A < 0.

e Le théoreme précédent n’est qu'une condition nécessaire, pas suffisante.

e La condition du second ordre n’est pas applicable ici.

Le théoreme ci-dessus nous dit que pour optimiser f sous contrainte donnée par g, nous
devons résoudre n + 1 équations

féleggl, f;n:Ag;n, g(xy, ..., x,) =0

sur n + 1 variables
T, ..., Xp, A\

Lagrangien

L’idée de la méthode des multiplicateurs de Lagrange est de réécrire la condition
grad f(x) = X grad g(x)

comme suit :

grad L(x,\) =0, where L(x,\)= f(x)— \g(x).

Définition 2. Le Lagrangien du probléeme d’optimisation pour [ avec contrainte donnée par
g est une fonction de n+ 1 wvariables réelles

L(z, ) = f(z) — Ag(x).

Remarque 1. Lorsque nous écrivons grad L(x, \) , voulons-nous dire le gradient par rapport
a x, ou par rapport a x et X\ ? La réponse : ce n'est pas important, car les deux gradients
différent d’une (derniére) coordonnée, la dérivée par rapport a A, qui donne

?)_i _ %(f(a:) —Ag(@)) = —g().

Lorsque nous fizons cette dérivée a zéro, nous retrouvons simplement la contrainte :
g(x) =0.

Done, si par grad nous entendons le gradient par rapport a (x, \) , alors l’équation grad L =
0 englobe également la contrainte g(x) = 0. Sinon, nous devons énoncer la contrainte
séparément.

Remarque 2. Le signe moins devant g(x) dans la définition de L est conventionnel.
Puisque X\ est un nombre réel arbitraire, nous le probleme avec +\ au lieu de —\ est
exactement le méme. Vous pouvez l’écrire comme vous le souhaitez.

Une certaine différence apparait dans les problemes d’optimisation avec des contraintes
d’inégalité, que nous ne traitons de toute facon pas dans ce cours.



Exemple (suite)

Résolvons maintenant le probleme
maximize B(qi,¢2) = 51q1 + 70g2 — 247 — 3q1¢2 — 345
sous contrainte ¢ + ¢ — 13 =10

en utilisant la méthode des multiplicateurs de Lagrange. Tout d’abord, nous construisons le
Lagrangien de ce probleme :

L(q1, g2, \) = 51q1 + 70qs — 247 — 3q1g2 — 3¢5 — Maq1 + g2 — 13) = 0.
En prenant le gradient, nous obtenons le systeme d’équations suivant :

51 —4q; — 3ga — A\ = 0,
70—3(]1—6Q2—)\:O,
—(q1 +q —13) =0.

En résolvant ce systeme comme d’habitude, nous obtenons

Remarque 3. Puisque nous avons introduit A comme un paramétre artificiel, nous n’avons
pas besoin de connaitre sa valeur. Par conséquent, nous pouvons nous en débarrasser des
que possible lors de la résolution du systéme.

Autre exemple

Considérons le probleme d’optimisation suivant :
maximize f(zy,x2) = x129 sous contrainte 2z + xg = 1.

Notez que le seul point extremum candidat libre 1 = x5 = 0 de f est un point de selle,
mais sous la contrainte 2x; + x5 = 1 la fonction a un maximum ! Voyons d’abord cela en
utilisant la méthode de substitution :

201 + 20 =1 = a9 =1 — 224,

nous devons donc trouver les extrema libres de

f(l’1> = .731(1 — 21‘1)
Par conséquent,

, 1 1
f:0:> 1—4113'1:0:>93'1:Z :>$2:§.

Puisque f” = —4 <0, ce point est bien un maximum.



Applications économiques

Soient ¢; et ¢o les quantités de certains matériaux, a ’aide desquels nous pouvons produire
la quantité @ = Q(q1,¢2) d’'un nouvel objet. Si p; =4 est le prix d’'une unité de matériau
1 et po = 3 est le prix d’une unité de matériau 2, et que nous avons besoin de ) =9, alors
le probleme de minimisation des cotits consiste a minimiser le cout total

4dq1 + 32

sous contrainte

Q((h, QQ) =0.
Une hypothese typique est que ) est de la forme Cobb-Douglas. Par exemple,

Q(Qh%) = 6q1/2 3/2'

Alors le probleme est bien posé (c’est-a-dire que nous avons suffissamment d’informations
pour commencer a le résoudre) :

minimize 4q; + 3¢> under 6q1/2 329,

Le Lagrangien de ce probleme est donné par
Lqi, 42, A) = g1 + 3g2 — M6, %% — 9).
Les conditions du premier ordre se lisent :

41— 3\, ~1/2 3/2 —0
grad L =0 or 3—9\q, 1/2 1/2:0
—6q," 3/2+9_0

Tout d’abord, nous nous débarrassons de \ :

4 19 —30 1 10 12
A= gCJ%/QQ/ §CI1 /QQ /7

par conséquent
4q1 = qa.

En injectant cela a la place de ¢» dans la contrainte, nous obtenons

3
60 %(4g)?P+9=0 = —48¢°+9=0 = ¢ = i%

Notez que la solution négative n’a pas de sens dans notre interprétation du probleme, nous
sommes donc laissés avec la solution suivante :
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Pour trouver @), nous injectons ¢; et go dans Q(qi,¢2) :

Q=09.



Solution alternative

Résolvons également le méme probleme par substitution :

1/2 3/2 9 _
691/ QQ/ =9 = q= Z(nga
donc, au lieu de 4q; + 3¢ sous la contrainte 6qi/ 2q;’/ ? = 9, nous devons minimiser

9
flg) =4- qu3 + 3¢a.

En différenciant, nous obtenons
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Optimisation sous plusieurs contraintes d’égalité

La méthode des multiplicateurs de Lagrange fonctionne également pour les problemes d’optimisation
sous plusieurs contraintes d’égalité :

maximize/minimize f(x) under constraints ¢i(x) = g2(x) =+ = gn(x) = 0.
Nous avons juste besoin de construire la fonction Lagrangienne comme suit :

L(z,A) = f(z) = X'g()

T

ou g(z) = (g1(x),...,gm(x))" ou, en d’autres termes,

L(z, A) = f(z) = ) Nigi(=).
i=1
Notez que L dans ce cas est une fonction de n + m variables.

Le reste de la solution se déroule comme avant.

Conditions du second ordre

Les conditions du second ordre dans les problemes contraints sont plus compliquées que
simplement vérifier que le Hessien est défini positif ou négatif. Nous ne traitons pas ces
conditions dans ce cours ! En particulier, cette section n’est pas incluse dans ’examen.

Pour ceux qui sont intéressés, nous devons vérifier que le Hessien de [ restreint a [’espace
tangent a la contrainte F = {v : v' grad g(xy) = 0} est défini positif ou négatif. En d’autres
termes, que v' H(xy)v < 0 ou > 0 pour tout v € F non nul.



