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Extrema sous contraintes

Soient f : Rn → R et g : Rn → R deux fonctions.

Définition 1. On dit qu’un point x0 ∈ Rn est un maximum (ou minimum) local d’une
fonction sous contrainte g(x) = 0 , si f(x0) ≥ f(x) (ou f(x0) ≤ f(x) ) pour tout x ≈ x0

tel que g(x) = 0 .

Voici quelques remarques :

• L’opposé de “sous contrainte” est “libre” : extrema libre signifie “extrema sans con-
traintes”, c’est-à-dire, sur l’ensemble de Rn .

• Notez la différence avec la notion de maximum/minimum local : là, on doit comparer
f(x0) avec les valeurs de f en tous les points voisins x , tandis qu’ici f(x0) est
seulement comparé avec les points x , où g(x) = 0 est satisfaite.

• En particulier, x0 doit lui-même satisfaire g(x0) = 0 .

• Pourquoi zéro dans “ g(x) = 0 ” ? Juste une convention ! Toute contrainte de la
forme g(x) = c peut être réécrite comme g̃(x) = 0 avec une nouvelle fonction g̃(x) =
g(x)− c .

• En d’autres termes, nous étudions les extrema sous contraintes d’égalité. Il existe
également une théorie similaire des extrema sous contraintes d’inégalité g(x) ≥ 0 ,
mais nous ne la traiterons pas dans ce cours.

• Interprétation géométrique : puisque G = {x : g(x) = 0} ⊂ Rn est une certaine
surface, les extrema sous contraintes de f sont juste les extrema libres de f restreints
à cette surface. C’est-à-dire, les extrema libres de f : G → R au lieu de f : Rn → R .

Des exemples naturels de problèmes d’extrema sous contraintes proviennent de la théorie de
l’utilité, où nous avons généralement des contraintes budgétaires (la quantité d’argent est
limitée).

Un autre exemple naturel : maximiser l’aire d’un rectangle si son périmètre est fixe. Ou
maximiser le volume d’une bôıte si sa surface est fixe.

Ci-dessous, nous allons discuter deux approches distinctes pour résoudre ce problème :

• méthode de substitution : traiter la contrainte g(x) = 0 comme une équation, à
l’aide de laquelle nous pouvons exprimer certaines variables en fonction des autres et
l’injecter dans f ; schématiquement,

g(x1, x2) = 0
solve
=⇒ x2 = h(x1) =⇒ optimize new function f̃(x1) = f(x1, h(x1)).



• méthode des multiplicateurs de Lagrange : construire une nouvelle fonction L
de n+1 variables (en introduisant une variable artificielle), appelée le Lagrangien, de
sorte que les extrema sous contraintes de f soient les extrema libres de L , et optimiser
L comme avant.

Rappel sur les extrema libres

Rappelez-vous que x0 est un point extremal candidat de f si grad f(x0) = 0 . Pour
déterminer si x0 est bien un point extremal, nous devons vérifier le type du différentiel du
second ordre d2f(x0) ou du Hessien Hf (x0) .

Exemple

Dans cette section, nous utilisons la méthode de substitution pour résoudre le problème
suivant : maximiser

B(q1, q2) = 55q1 + 70q2 − 2q21 − 3q1q2 − 3q22

sous contrainte
q1 + q2 − 13 = 0.

Tout d’abord, nous résolvons la contrainte pour l’une des deux variables :

q2 = 13− q1,

puis nous l’injectons dans B :

B̃(q1) = B(q1, 13− q1) = 55q1 + 70(13− q1)− 2q21 − 3q1(13− q1)− 3(13− q1)
2

= 403 + 24q1 − 2q21.

Ensuite, nous maximisons B̃ comme d’habitude :

B̃′(q1) = 0 =⇒ 24− 4q1 = 0 =⇒ q1 = 6.

Il reste à trouver q2 :
q2 = 13− q1 = 7.

Puisque B̃′′ = −4 < 0 , cette solution est bien un maximum.

Conditions nécessaires pour un extremum sous contraintes

Le théorème suivant est donné sans preuve :

Théorème 1. Si x0 est un point extremum de f sous contrainte g(x) = 0 , alors grad f
et grad g sont codirectionnels ou proportionnels. C’est-à-dire, il existe un nombre λ ∈ R
tel que

grad f(x0) = λ grad g(x0).



• grad f(x0) = λ grad g(x0) signifie que les deux vecteurs pointent dans la même direc-
tion si λ > 0 et qu’ils pointent dans les directions opposées si λ < 0 .

• Le théorème précédent n’est qu’une condition nécessaire, pas suffisante.

• La condition du second ordre n’est pas applicable ici.

Le théorème ci-dessus nous dit que pour optimiser f sous contrainte donnée par g , nous
devons résoudre n+ 1 équations

f ′
x1

= λg′x1
, . . . , f ′

xn
= λg′xn

, g(x1, . . . , xn) = 0

sur n+ 1 variables
x1, . . . , xn, λ.

Lagrangien

L’idée de la méthode des multiplicateurs de Lagrange est de réécrire la condition

grad f(x) = λ grad g(x)

comme suit :
gradL(x, λ) = 0, where L(x, λ) = f(x)− λ g(x).

Définition 2. Le Lagrangien du problème d’optimisation pour f avec contrainte donnée par
g est une fonction de n+ 1 variables réelles

L(x, λ) = f(x)− λg(x).

Remarque 1. Lorsque nous écrivons gradL(x, λ) , voulons-nous dire le gradient par rapport
à x , ou par rapport à x et λ ? La réponse : ce n’est pas important, car les deux gradients
diffèrent d’une (dernière) coordonnée, la dérivée par rapport à λ , qui donne

∂L

∂λ
=

∂

∂λ
(f(x)− λg(x)) = −g(x).

Lorsque nous fixons cette dérivée à zéro, nous retrouvons simplement la contrainte :

g(x) = 0.

Donc, si par grad nous entendons le gradient par rapport à (x, λ) , alors l’équation gradL =
0 englobe également la contrainte g(x) = 0 . Sinon, nous devons énoncer la contrainte
séparément.

Remarque 2. Le signe moins devant g(x) dans la définition de L est conventionnel.
Puisque λ est un nombre réel arbitraire, nous le problème avec +λ au lieu de −λ est
exactement le même. Vous pouvez l’écrire comme vous le souhaitez.

Une certaine différence apparâıt dans les problèmes d’optimisation avec des contraintes
d’inégalité, que nous ne traitons de toute façon pas dans ce cours.



Exemple (suite)

Résolvons maintenant le problème

maximize B(q1, q2) = 51q1 + 70q2 − 2q21 − 3q1q2 − 3q22

sous contrainte q1 + q2 − 13 = 0

en utilisant la méthode des multiplicateurs de Lagrange. Tout d’abord, nous construisons le
Lagrangien de ce problème :

L(q1, q2, λ) = 51q1 + 70q2 − 2q21 − 3q1q2 − 3q22 − λ(q1 + q2 − 13) = 0.

En prenant le gradient, nous obtenons le système d’équations suivant :
51− 4q1 − 3q2 − λ = 0,

70− 3q1 − 6q2 − λ = 0,

−(q1 + q2 − 13) = 0.

En résolvant ce système comme d’habitude, nous obtenons

q1 = 6, q2 = 7, λ = 10.

Remarque 3. Puisque nous avons introduit λ comme un paramètre artificiel, nous n’avons
pas besoin de connâıtre sa valeur. Par conséquent, nous pouvons nous en débarrasser dès
que possible lors de la résolution du système.

Autre exemple

Considérons le problème d’optimisation suivant :

maximize f(x1, x2) = x1x2 sous contrainte 2x1 + x2 = 1.

Notez que le seul point extremum candidat libre x1 = x2 = 0 de f est un point de selle,
mais sous la contrainte 2x1 + x2 = 1 la fonction a un maximum ! Voyons d’abord cela en
utilisant la méthode de substitution :

2x1 + x2 = 1 =⇒ x2 = 1− 2x1,

nous devons donc trouver les extrema libres de

f̃(x1) = x1(1− 2x1).

Par conséquent,

f̃ ′ = 0 =⇒ 1− 4x1 = 0 =⇒ x1 =
1

4
=⇒ x2 =

1

2
.

Puisque f̃ ′′ = −4 < 0 , ce point est bien un maximum.



Applications économiques

Soient q1 et q2 les quantités de certains matériaux, à l’aide desquels nous pouvons produire
la quantité Q = Q(q1, q2) d’un nouvel objet. Si p1 = 4 est le prix d’une unité de matériau
1 et p2 = 3 est le prix d’une unité de matériau 2, et que nous avons besoin de Q = 9 , alors
le problème de minimisation des coûts consiste à minimiser le coût total

4q1 + 3q2

sous contrainte
Q(q1, q2) = 9.

Une hypothèse typique est que Q est de la forme Cobb-Douglas. Par exemple,

Q(q1, q2) = 6q
1/2
1 q

3/2
2 .

Alors le problème est bien posé (c’est-à-dire que nous avons suffisamment d’informations
pour commencer à le résoudre) :

minimize 4q1 + 3q2 under 6q
1/2
1 q

3/2
2 = 9.

Le Lagrangien de ce problème est donné par

L(q1, q2, λ) = 4q1 + 3q2 − λ(6q
1/2
1 q

3/2
2 − 9).

Les conditions du premier ordre se lisent :

gradL = 0 or


4− 3λq

−1/2
1 q

3/2
2 = 0

3− 9λq
1/2
1 q

1/2
2 = 0

−6q
1/2
1 q

3/2
2 + 9 = 0.

Tout d’abord, nous nous débarrassons de λ :

λ =
4

3
q
1/2
1 q

−3/2
2 =

1

3
q
−1/2
1 q

−1/2
2 ,

par conséquent
4q1 = q2.

En injectant cela à la place de q2 dans la contrainte, nous obtenons

−6q
1/2
1 (4q1)

3/2 + 9 = 0 =⇒ −48q21 + 9 = 0 =⇒ q1 = ±
√
3

4
.

Notez que la solution négative n’a pas de sens dans notre interprétation du problème, nous
sommes donc laissés avec la solution suivante :

q1 =

√
3

4
and q2 =

√
3.

Pour trouver Q , nous injectons q1 et q2 dans Q(q1, q2) :

Q = 9.



Solution alternative

Résolvons également le même problème par substitution :

6q
1/2
1 q

3/2
2 = 9 =⇒ q1 =

9

4
q−3
2 ,

donc, au lieu de 4q1 + 3q2 sous la contrainte 6q
1/2
1 q

3/2
2 = 9 , nous devons minimiser

f̃(q1) = 4 · 9
4
q−3
2 + 3q2.

En différenciant, nous obtenons

−27q−4
2 + 3 = 0 =⇒ q2 =

√
3 =⇒ q1 =

√
3

4
.

Optimisation sous plusieurs contraintes d’égalité

La méthode des multiplicateurs de Lagrange fonctionne également pour les problèmes d’optimisation
sous plusieurs contraintes d’égalité :

maximize/minimize f(x) under constraints g1(x) = g2(x) = · · · = gm(x) = 0.

Nous avons juste besoin de construire la fonction Lagrangienne comme suit :

L(x,λ) = f(x)− λ⊤g(x)

où g(x) = (g1(x), . . . , gm(x))
⊤ ou, en d’autres termes,

L(x,λ) = f(x)−
m∑
i=1

λigi(x).

Notez que L dans ce cas est une fonction de n+m variables.

Le reste de la solution se déroule comme avant.

Conditions du second ordre

Les conditions du second ordre dans les problèmes contraints sont plus compliquées que
simplement vérifier que le Hessien est défini positif ou négatif. Nous ne traitons pas ces
conditions dans ce cours ! En particulier, cette section n’est pas incluse dans l’examen.

Pour ceux qui sont intéressés, nous devons vérifier que le Hessien de f restreint à l’espace
tangent à la contrainte F = {v : v⊤ grad g(x0) = 0} est défini positif ou négatif. En d’autres
termes, que v⊤H(x0)v < 0 ou > 0 pour tout v ∈ F non nul.


