

Quick Guide to the Transshipment Problem

The Big Picture

The transshipment simplex algorithm has two phases:

- **Phase I:** Find *any* feasible solution (or prove none exists)
- **Phase II:** Improve that solution until it's optimal

Both phases work with **tree solutions** — the key insight is that basic solutions correspond to spanning trees.

Phase I: Finding a Feasible Solution

1. **Build the auxiliary network:**
 - Pick any source node (say node 1)
 - Add artificial arcs from node 1 to all sinks (demand nodes)
 - Add artificial arcs from all other sources to node 1
 - Set cost = 0 for original arcs, cost = 1 for artificial arcs
2. **Build initial tree:** Use only the artificial arcs connecting to your chosen source
3. **Compute primal solution x :** Work from leaves inward — at each leaf, the flow on the edge equals the supply/demand at that node
4. **Compute dual solution y :** Set $y_1 = 0$, then propagate using $y_j = y_i + c_{ij}$ along tree edges
5. **Run Phase II on auxiliary problem** until optimal
6. **Check result:** If optimal cost = 0, you have a feasible tree for the original problem. If cost > 0, original problem is infeasible.

Phase II: Improving to Optimality

Repeat until no violated constraints:

1. **Compute dual solution y from the tree:**
 - Pick any node (usually node 1) and set $y_1 = 0$
 - Traverse the tree, for each edge:
 - If edge goes $(i \rightarrow j)$ and you know y_i : set $y_j = y_i + c_{ij}$
 - If edge goes $(j \rightarrow i)$ and you know y_i : set $y_j = y_i - c_{ji}$
 - Continue until all nodes have y values
2. **Check dual constraints:** For each non-tree arc (i, j) , check if $y_j - y_i \leq c_{ij}$
3. **If violated:** Add arc (i, j) to tree \Rightarrow creates a cycle C
4. **Split cycle:** $C_+ =$ arcs with same orientation as (i, j) , $C_- =$ opposite orientation
5. **Compute Δ :** $\Delta = \min\{x_{kl} : (k, l) \in C_-\}$
6. **Update flows:** Add Δ to arcs in C_+ , subtract Δ from arcs in C_-
7. **Remove arc:** The arc where minimum was achieved leaves the tree
8. **Go back to step 1** (recompute y with new tree)

Stopping condition: When all dual constraints $y_j - y_i \leq c_{ij}$ are satisfied \Rightarrow optimal!

Intuition

- y_i represents the “price” at node i
- Violated constraint means you can buy at i and sell at j for a profit
- So there’s room to improve the solution

Practical Tips

- Always keep the original graph visible — don’t erase it
- Check dual constraints systematically (lexicographic order: $(1, 2), (1, 3), \dots, (2, 3), \dots$)
- Only check arcs NOT in the current tree (tree arcs satisfy constraints by construction)
- Violated dual constraint = room for improvement