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Summary

This thesis explores several directions in the theory of extremal behaviour of Gaussian processes
opened by a recent paper by K. Dȩbicki, E. Hashorva and L. Wang (2019). In Chapter 2 we
extend their results from processes to a simple yet rich class of non-homogenous vector-valued
Gaussian random fields. As an application of this extension, we derive exact asymptotic approx-
imations of the so-called double crossing probabilities. In Chapters 3, we present a new class
of covariance matrix functions of exponential type, which we later apply in Chapter 4 in con-
junction with the Gordon inequality to the study of extremes of locally-homogenous Gaussian
random fields. This allows to significantly simplify proofs and avoid using stringent assumptions,
required by the previously available techniques. In Chapter 5, we introduce a class of multivari-
ate Gaussian processes, Brownian decision trees, closely related to the well-known Branching
Brownian motion and study their extremal behaviour. In Chapter 6, we investigate the Parisian
ruin in the so-called many inputs proportional reinsurance risk model with fractional Brownian
motion input.
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Résumé

Cette thèse explore plusieurs directions dans la théorie du comportement extrémal des proces-
sus gaussiens, ouvertes par un article récent de K. Dębicki, E. Hashorva et L. Wang (2019).
Dans le Chapitre 2, nous étendons leurs résultats des processus à une classe simple mais riche
de champs aléatoires gaussiens vectoriels non homogènes. Comme application de cette exten-
sion, nous dérivons des approximations asymptotiques exactes des probabilités dites de double
franchissement. Dans le Chapitre 3, nous présentons une nouvelle classe de fonctions de ma-
trice de covariance de type exponentiel, que nous appliquons par la suite dans le Chapitre 4 en
conjonction avec l’inégalité de Gordon à l’étude des extrêmes des champs aléatoires gaussiens lo-
calement homogènes. Cela permet de simplifier considérablement les démonstrations et d’éviter
l’utilisation d’hypothèses strictes requises par les techniques précédemment disponibles. Au
Chapitre 5 nous introduisons une classe de processus gaussiens multivariés, les arbres de décision
browniens, étroitement liés au bien connu mouvement brownien branchant, et nous étudions leur
comportement extrême. Dans le Chapitre 6, nous étudions la ruine parisienne dans le modèle
de réassurance à entrées multiples proportionnelles avec un mouvement brownien fractionnaire
en entrée.
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Chapter 1

Introduction

Asymptotical analysis of Gaussian fields and processes has a long and richly branched history,
tracing its roots to the early part of the last century. In this thesis, we shall focus on the recent
developments around seminal contributions made in the end of 1960s by J. Pickands III in two
papers [1] and [2]. In these papers he formulated a general approach, known now as the double
sum method, for deriving exact asymptotical approximations of the so-called high exceedance
probabilities

P {∃ t ∈ [0, T ] : X(t) > u} as u → ∞.

Here X is a centered Gaussian process on [0, T ] with values in R satisfying some standard
assumptions. These results have since been extended in numerous directions, including

1. replacing [0, T ] by some subset T of Rn, see pioneering works [3, 4, 5, 6, 6], as well recent
developments [7, 8, 9, 10];

2. replacing [0, T ] by an asymptotically dense grid (see [11]) or even random grid (see [12]);

3. allowing X to be non-centered, see [13];

4. allowing X and T to depend on u in some weak but non-trivial way, see [14];

5. allowing X to be asymptotically Gaussian, see [15];

6. replacing the event {∃ t : X(t) > u} = {suptX(t) > u} by a more general class of events
of the form {Γ(X − u)} with Γ a functional of the entire path, see, for example, [16, 17]
and a general contribution [18].
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Despite the developments mentioned above, up until recently little has been known about ex-
act asymptotics of Gaussian high exceedance probabilities in the multivariate case. A deep
contribution [19] has paved a way towards various problems of the following kind:

P {∃ t ∈ [0, T ] : X(t) > ub} as u → ∞

for b ∈ Rd \ (−∞, 0]d and X being a continuous centered Gaussian process. Here “>” denotes
the componentwise (Hadamard) comparison. As it turns out, these problems are much more
challenging than the univariate ones due to the lack of several techniques, such as the Slepian
and the Borell-TIS inequalities, which are crucial for the univariate case. The reader can find
the detailed account of this shortage in the introduction to the aforementioned paper.

Development of the multivariate Gaussian extremes theory has opened the door to a wide range
of new problems absent in the univariate case. Here are some notable possibilities:

1. The components of X may exceed a certain threshold simultaneously, which corresponds
to the event {∃ t : X1(t) > b1u, X2(t) > b2u} (see [20]), or non-simultaneously, which
corresponds to another event {∃ t1, t2 : X1(t1) > b1u, X2(t2) > b2u} (see [21]);

(a) Simultaneous exceedance. (b) Non-simultaneous exceedance.

2. The exceedance event may be more generally defined as {∃ t : X(t) ∈ Bu}, where Bu is a
parametric family of sets escaping to infinity in some way as u → ∞ (see an upcoming
paper by K. Dȩbicki, N. Kriukov and S. Novikov);

3. Particular cases of the previous point include the high exceedances of the i-th order statistic
process Xi:n(t) (see [22]), the product

∏n
i=1Xi(t) (see [23]), the norm ∥X(t)∥ (see [24]) or

other functionals which break Gaussianity but have simple geometric interpretation;

(c) Exceedance from a parabolic re-
gion.

(d) Order statistics exceedance. (e) Product exceedance.

4. Many new problems arise from non-trivial dependence structures between the components
of vector X.

6
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(f) Exceedance of the norm ∥X(t)∥. (g) {∃ t : X(t) ∈ {(r, θ) : r ≥ u(4+cos 5θ)}}

Two more examples for points 2 and 3.

One could say that a theory is complete if most of its problems can be solved by a tedious
application of known tools. In this sense, theory of multivariate Gaussian extremes is far from
complete: many open questions are waiting to be solved, and we believe that some new tools
needed to tackle them are yet to be invented. By this thesis, we hope to make a small step
towards such completion.

In Chapter 2, we extend the results of [19] to a simple yet rich class of non-homogenous vector
valued Gaussian fields, that is, Gaussian random functions X : Rn → Rd. As it turns out, the
vector and the field structures intertwine non-trivially. As an application of general theorem
presented in this chapter, we present several results on the so-called double crossing probabilities:
the probability that a real-valued process first hits a high positive barrier and then a low negative
barrier within a finite time horizon (see also [25]).

To introduce Chapters 3 and 4, let us expand on what we said above about Slepian inequality
being missing from a multivariate Gaussian extremes toolbox. This inequality plays a crucial
role in the univariate double sum method allowing to find for a given process X, numer ε > 0
and a short interval a pair of processes Y±,ε, which stochastically dominate X from above
and from below and are close to X as ε → 0 on this interval. This in turn allows one to avoid
uniformity issues (see [19] for details), which otherwise require heavier proofs and more stringent
assumptions. A multivariate extension of Slepian inequality, known as the Gordon inequality,
was previously believed to be inaccessible due to a lack of reference processes Y±,ε. In Chapter 3,
we introduce a new class of matrix-valued covariance functions. This class, interesting in its own
right, we later apply in Chapter 4 in conjunction with the Gordon inequality to the study of the
extremes of locally-homogenous Gaussian random fields.

In Chapter 5, we investigate high excursions of a new process, which we termed the Brownian
decision tree. This process is a close relative of the standard branching Brownian motion and it
may be informally described as follows: at time t = 0, a Brownian motion B sets off from zero
and runs freely until a non-random time τ1 > 0, at which it splits into N1 ≥ 1 conditionally
on the common past independent Brownian motions. The resulting vector-valued process again
runs freely up to some time point τ2 > τ1, where each of its components splits again into N2 ≥ 1
particles, and the construction recursively repeats. There are two differences between this and
the classical BBm model as presented, for example, in the seminal paper by Bramson [26].
Firstly, the branching times are non-random, whereas in the standard model the distances
between them are exponentially distributed. Secondly, all branches (that is, the components of
the vector-valued process described above) undergo splitting into the same number of offsprings
and at the same time (in the classical BBm model each branch has its own branching clock).
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This, along with the usual description of the classical BBm model as a process indexed by a
tree, suggests the name Brownian decision trees, where the word “decision” refers to the specific
type of trees branching at the same points and into the same amount of branches.

In Chapter 6, we investigate the Parisian ruin probability for a class of Gaussian processes with
power-asymmetric behaviour of the variance near the unique optimal point. This result is then
applied to the study of Parisian ruin in the so-called many-inputs proportional reinsurance risk
model with fractional Brownian motion input.
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Chapter 2

Extremes of vector-valued locally
additive Gaussian fields with
application to double crossing
probabilities

The asymptotic analysis of high exceedance probabilities for Gaussian processes and fields has
been a blooming research area since J. Pickands introduced the now-standard techniques in the
late 60’s. The vector-valued processes, however, have long remained out of reach due to the lack
of some key tools including Slepian’s lemma, Borell-TIS and Piterbarg inequalities. In a 2020
paper by K. Dȩbicki, E. Hashorva and L. Wang, the authors extended the double-sum method to
a large class of vector-valued processes, both stationary and non-stationary. In this contribution
we make one step forward, extending these results to a simple yet rich class of non-homogenous
vector-valued Gaussian fields. As an application of our findings, we present an exact asymptotic
result for the probability that a real-valued process first hits a high positive barrier and then a
low negative barrier within a finite time horizon.

This is a joint work with N. Kriukov, resubmitted to Electronic Journal of Probability.
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2.1 Introduction

The asymptotic analysis of high exceedance probabilities for Gaussian processes and fields
has been a blooming research area for several decades. The most classical results due to J.
Pickands [1, 2] give the asymptotics of

P {∃ t ∈ [0, T ] : X(t) > u} , as u → ∞,

when X is a centered Gaussian process on [0, T ] with values in R satisfying some standard
assumptions. These results have since been extended in numerous directions. Among these,
little was known about similar problems for vector-valued processes until very recently. A deep
contribution [3] paved a way to the asymptotic analysis of the probabilities

P {∃ t ∈ [0, T ] ∀ i ∈ {1, . . . , d} : Xi(t) > u bi} , as u → ∞,

for a centered Rd-valued Gaussian process X(t), t ∈ [0, T ] and b ∈ Rd with at least one posi-
tive component. As the authors point out, even the seemingly trivial case of centered X with
independent components is quite challenging (see [4, 5, 6]). See also the earlier studies [7, 8, 9].
We want to mention in passing the non-centered vector-valued high exceedance problems, which
were initially studied for linear transformations of Rd-valued Brownian motion in [10, 11] and
have recently been extended to linear transformations of stationary increments processes with
independent components satisfying Berman condition in [12]. The approximations of high ex-
ceedance probabilities of vector-valued processes appear naturally in various applications includ-
ing statistics, ruin theory and queueing theory, see e.g., [5, 13, 14, 15, 16]

Another direction in which the classical theorems may be extended involves high exceedances of
Gaussian random fields X(t), t ∈ E ⊂ Rn. Deep results of this type are known since at least the
70’s and some of them are presented in the well-known monograph by Piterbarg [17]. See [18]
and [19] for some recent developments.

In the current contribution we prove several results related to the aforementioned generalizations,
that is, to centered Gaussian random vector fields X(t), t ∈ Rn taking values in Rd under some
simplifying assumptions. More specifically, the vector fields we consider behave near the most
likely point of high exceedance as sums of independent vector fields, each of which depends on
one coordinate of t, namely,

X(t) ≈ X1(t1) + X2(t2) + · · · + Xn(tn), t ≈ t∗.

The exact meaning of “≈” is described by Assumption A2 below. In developing these assump-
tions, our aim was to find the simplest yet fecund extension of the paper [3] to the case of
miltidimensional parameter. There are two recent papers we want to mention in this regard.
In [20] and [21] the so-called non-simultaneous ruin probability of a pair of correlated Brownian
motions with linear trends

P
{
∃ (t, s) ∈ [0, T ]2 : B1(t) − µ1t > u, B2(s) − µ2s > u

}
was studied in the infinite horizon case T = ∞ and finite horizon case T < ∞ correspondingly.
Although this probability may well be rewritten as a ruin of two dimensional vector field, our
local additivity assumptions are not met in this setup. Hence these two papers remain out of
reach of our Theorem 2.1. Similar results have been obtained in [22] for a class of R2-valued
locally-stationary Gaussian random fields indexed by Rn. See also [23] for recent developments
in the case of smooth vector-valued Gaussian fields.

As an application of our findings, we present an asymptotic formula for the probability that
a one-dimensional stationary Gaussian process X(t), t ∈ [0, T ] hits two distant barriers: one
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above and one below its starting point. Namely, we derive a precise approximation of

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} , a, b ≥ 0 (2.1)

as u → ∞.

Double crossing event.

The probability in (2.1) can be conveniently rewritten in the vector notation as

P
{
∃ t ∈ [0, T ]2 : X(t) > ub

}
, X(t) = (X(t1), −X(t2))

⊤ , b = (a, b)⊤.

If further the correlation function ρ(t) = E {X(0)X(t)} is positive, strictly smaller than 1 and
satisfies

ρ(t) ∼ 1 − ϑ tα + o (tα) as t → 0,

with some ϑ > 0 and α ∈ (0, 2], the problem falls within the scope of our assumptions after
some minor adjustments. In view of Theorem 2.2 in Section 2.3 we obtain

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} ∼ c umax{0,4/α−2} P {X(0) > au, X(T ) < −bu} ,

where the constant c ∈ (0,∞) is given in Theorem 2.1.

We now recapitulate the main ingredients of our approach and emphasize a few points which,
in our opinion, are worth mentioning.

First, it is known that the high exceedance event of a vector-valued Gaussian process X(t),
t ∈ [0, T ] is most likely to happen near the maximizer of the so-called generalized variance
function, defined as

σ−2
b (t) = min

x≥ b
x⊤ Σ−1(t)x,

where Σ(t) = R(t, t) and R(t, s) = E
{
X(t)X(s)⊤

}
is the covariance matrix function of the

process X. A similar function with t ∈ [0, T ]n instead of t ∈ [0, T ] plays the same role in the
case of random fields. The asymptotic analysis of the high exceedance probability usually begins
with showing that the probability that the overshoot happens outside some small vicinity of this
maximizer is negligible.

Secondly, in our approach to the issues arising from the dimensionality of the process, we closely
follow the paper [3], but there are two important differences. To explain the first, let us briefly
reproduce here Assumption D2 of the paper. Let R(t, s) be the covariance matrix of an Rd-
valued Gaussian process X(t), t ∈ [0, T ] and denote Σ(t) = R(t, t). Then, Assumption D2
demands that for all t ∈ [0, T ] there be a continuous d× d matrix-function A(t) such that

Σ(t) = A(t)A(t)⊤
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and with some d× d real matrix Ξ and β′ > 0 holds

A(t) = A(t0) − |t− t0|β
′
Ξ + o

(
|t− t0|β

′
)

(2.2)

as t → t0, where t0 is the point which maximizes the generalized variance σ2
b(t). From a practical

point of view, it is not always easy to compute A(t) starting with Σ(t). This is why instead of
assuming something similar to D2 and D3 (the latter also requires knowing A(t) along with its
inverse), we impose assumptions directly on the asymptotic expansion of the covariance matrix
R(t, s) for t and s close to t∗ (see Assumption A2).

Let us now explain the second difference. In [3] the authors assumed that (2.2) is satisfied with
Ξ and A(t0) such that w⊤ΞA⊤(t0)w > 0, where w is some specific vector. As it turns out, this
assumption is rather strong. To lift it, one may consider extending the expansion (2.2) to the
second order, namely

A(t) = A(t0) − |t− t0|β
′
Ξ − |t− t0|β Θ + o

(
|t− t0|β

)
, (2.3)

where w⊤ΞA⊤(t0)w = 0, but w⊤Θw > 0. The precise conditions under which this extension
is possible are presented by Assumptions A2.3 to A2.6.

In regard to the techniques used to work with the vector-valued setting of this contribution, we
refer our reader to the introduction of [3] where the authors describe in detail in what aspects
and why this case is much different from the one-dimensional. Here we mention in passing that
some of the tools crucial for the one-dimensional case are not available in the multivariate setup
(such as the Slepian lemma), while others (such as the Borell-TIS & Piterbarg inequalities) have
been successfully extended to this case.

Brief organization of the paper. Main results are presented in Section 2.2 with proofs rel-
egated to Section 2.5. The asymptotics of the double crossing probabilities are presented in
Section 2.3 with proofs relegated to Appendix. Section 2.4 contains several auxiliary results,
most of which are taken from [3] and reproduced here in an adapted form and without proofs
for the reader’s convenience. We conclude this section by introducing some notation.

Subscripts. Throughout the rest of the paper, the subscript u on any scalar-, vector or matrix-
valued function f defined on Rn or Rn ×Rn means, unless specified otherwise, its rescaling by a
factor of u−2/ν , that is, fu(t) = f(u−2/νt) or fu(t, s) = f(u−2/νt, u−2/νs), where ν is defined
in (2.7).

Vectors. All vectors (and only them) are written in bold letters, for instance b = (b1, . . . , bd)⊤,
1 = (1, . . . , 1)⊤ and 0 = (0, . . . , 0)⊤. If I ⊂ {1, . . . , n} and b ∈ Rn, by bI we mean (bi)i∈I ∈ R|I|

or, by notation abuse, its extension to Rn by zeroes: bi = 0 for i ∈ Ic. Unless specified otherwise,
all operations on vectors are performed componentwise. For example, ab with a, b ∈ Rn denotes
componentwise producs: (ab)i = aibi. Similarly for a/b, ea, or ⌊a⌋, denoting ai/bi, eai and ⌊ai⌋
correspondingly. We write a ≥ b if ai ≥ bi for all i ∈ {1, . . . , n}.

Matrices. If A = (Aij)1≤i, j≤d is a d × d matrix, we shall write AIJ for the submatrix
(Aij)i∈I, j∈J . If I = J , we shall occasionally write AI instead of AII . ∥A∥ denotes any fixed norm
in the space of d × d matrices. Our formulae shall not depend on the choice of the norm. For
w ∈ Rd, diag(w) stands for the diagonal matrix with entries w1, . . . , wd on the main diagonal.

Asymptotic equivalence. If (X, dX) is a metric space, (N, ∥ · ∥N ) and (H, ∥ · ∥H) are normed
spaces, f, g : M → N and h : M → H, we write “f = g + o(h) as x → x0” if for every ε > 0
there exists some δ > 0 such that

dX(x, x0) < δ =⇒ ∥f(x) − g(x)∥N ≤ ε ∥h(x)∥H .
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In particular, this convention will be frequently used with X = Rn, N = Rd×d the space of
matrices with Frobenius norm, H = R with standard distance | · | or H = Rd×d, again with
Frobenius norm.

Quadratic programming problem. Let Σ be a d × d real matrix with inverse Σ−1. If
b ∈ Rd \ (−∞, 0]d, then by Lemma 2.5 the quadratic programming problem ΠΣ(b)

ΠΣ(b) : minimize x⊤ Σ−1 x under the linear constraint x ≥ b

has a unique solution b̃ ≥ b and there exists a unique non-empty index set I ⊂ {1, . . . , d} such
that

b̃I = bI , b̃J = ΣIJ(ΣII)−1 bI ≥ bJ , wI = (ΣII)−1 bI > 0I , wJ = 0J ,

where w = Σ−1b̃, where coordinates J = {1, . . . , d} \ I are responsible for the dimension-
reduction phenomena, while coordinates belonging to I play an essential role in the exact
asymptotics.

Other notation. We use lower case constants c1, c2, . . . to denote generic constants used in
the proofs, whose exact values are not important and can be changed from line to line. The
labeling of the constants starts anew in every proof. Similarly, ϵ1, ϵ2, . . . denote error terms,
that is, functions of various variables which are small in some specific sense, always described
near the point where they are introduced. Their labeling also starts anew in every proof.

2.2 Main results

Let X(t), t ∈ [0,T ], T > 0 be a non-stationary centered Gaussian random field with continuous
sample paths. Define two matrix-valued functions by

R(t, s) = E
{
X(t)X(s)⊤

}
, Σ(t) = R(t, t)

and assume that Σ(t) is non-singular. Set Σ = Σ(0). It is known that the function σ2
b(t), defined

by
σ−2
b (t) = min

x≥ b
x⊤ Σ−1(t)x (2.4)

and further refered to as the generalized variance, plays a similar role in the multivariate setup
to that of the usual variance in the one-dimensional case. Recall that b ∈ Rd here is a constant
vector with at least one positive component. More precisely, the high exceedance event usually
happens near the maximizer of σ−2

b (t). The asymptotics then is determined by the behaviour
of R(t, s) and Σ(t) near the this maximiser. Let b(t) denote the vector which minimizes (2.4).
We shall assume that:

A1 σ2
b(t) attains its unique maximum at t∗ = 0.

A2 There exist

1. collections of real d× d matrices (Ak,i)i=1,...,n, k = 1, . . . , 5 and (A6,i,j)i,j=1,...,n

2. vectors β′, β ∈ Rn
+ satisfying 0 < β′ < β ≤ 2β′

3. a vector α ∈ (0, 2)n

such that
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Σ −R(t, s) ∼
n∑

i=1

[
A1,i t

β′
i

i + A2,i t
βi
i + A3,i s

β′
i

i + A4,i s
βi
i + Sαi,A5,i(ti − si)

]
+

n∑
i, j=1

A6,i,j t
β′
i

i s
β′
j

j , (A2.1)

where
Sα,V (t) := |t|α

(
V 1t≥0 + V ⊤1t<0

)
(2.5)

and ∼ means that the error ϵ satisfies

ϵ = o

(
n∑

i=1

[
tβi
i + sβi

i + |ti − si|αi

])
as (t, s) ↓ (0,0). (A2.2)

Denote
F :=

{
i ∈ {1, . . . , n} : 2β′

i = βi
}
, I := {i ∈ {1, . . . , n} : αi < βi} , (2.6)

and assume further that

A1,iw = 0 and b(t) − b(0) = o

(
n∑

i=1

t
β′
i

i

)
as t → 0, (A2.3)

ξi := w⊤A2,iw > 0 for all i ∈ {1, . . . , n}, (A2.4)

κi := w⊤A5,iw > 0 for all i ∈ I. (A2.5)

Finally, define a block matrix D = (Di,j)i,j∈F , each block of which is a d× d matrix given by

Di,j := A6,i,j + A1,i Σ−1A⊤
1,j , i, j ∈ F

and assume that it is positive definite, abbreviated below as

D ≽ 0. (A2.6)

A3 There exist γ ∈ (0, 2]n and C > 0, such that for all t, s

E
{
|X(t) −X(s)|2

}
≤ C

n∑
i=1

|ti − si|γi . (A3)

We shall also frequently use the following notation:

ν := min{α,β}, J := {i ∈ {1, . . . , n} : αi = βi} , K := {i ∈ {1, . . . , n} : αi > βi} . (2.7)

Note that
{i : νi = αi} = I ∪ J and {i : νi = βi} = J ∪ K.

Remark 2.1. It follows from A2.1 that A3,i = A⊤
1,i, A4,i = A⊤

2,i and A⊤
6,i,j = A6,j,i. Moreover,

the terms with t
β′
i

i t
β′
j

j such that i ̸∈ F , j ̸∈ F or both can be subsumed into the error term. Hence,
the assumption A2.1 may be rewritten as follows:

Σ −R(t, s) =
n∑

i=1

[
A1,i t

β′
i

i + A2,i t
βi
i + A⊤

1,i s
β′
i

i + A⊤
2,i s

βi
i + Sαi,A5,i(ti − si)

]

+
∑
i, j∈F

A6,i,j t
βi/2
i s

βj/2
j + o

(
n∑

i=1

[
tβi
i + sβi

i + |ti − si|αi

])
. (2.8)
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Remark 2.2. It may be instructive to compare our assumption A2 to that of [3]. To this end,
consider the case A1,i = A6,i,j = 0. The assumptions A2.3 and A2.6 are fulfilled automatically
and assumption A2.1 reads

Σ −R(t, s) =
n∑

i=1

[
A2,i t

βi
i + A⊤

2,i s
βi
i + Sαi,A5,i(ti − si)

]
+ ϵ, (A2.1*)

with the same error order as in A2.2. Assumption A2.1* combines (2.10), (2.11) and (2.13)
of the aforementioned paper into one and extends it from processes to fields of simple (additive)
covariance structure. It also has an advantage over them since it does not require finding A(t)
such that Σ(t) = A(t)A⊤(t), which can always be done in theory, but hard to implement in
practice. Next, assumption A2.4 extends (2.12) to the case of fields and A2.5 does the same to
the condition w⊤Vw > 0 of Theorem 2.4.

Another important difference consists in allowing the leading order of Σ − R(t, s) to nullify w,
that is, to fail the condition w⊤A1,iw > 0 and even A1,iw ̸= 01. In this case we require a certain
speed of convergence of the quadratic programming problem solutions b(t) to b(0), see A2.3.

Remark 2.3. Assumption A2.6 is somewhat mysterious, which is why we present a few inter-
mediary results without assuming it in the Appendix. By Lemma 2.16 it is equivalent to the
following: there exists a family (Ci,k)i,k∈F such that

Di,j =
∑
k∈F

Ci,k C
⊤
k,j . (2.9)

Note that if A6,i,j = 0, then A1,iΣ
−1A⊤

1,j = DiD
⊤
j with Di = A1,iΣ

−1/2, and therefore the
assumption is satisfied. An example of this situation may be found in our fBm double crossing
example, see Section 2.3.2. Another useful example is when A6,i,j it not zero, but can itself be
represented as CiC

⊤
j for some Ci. A6,i,j = CiC

⊤
j , then the assumption is also satisfied.

2.2.1 Constants

For α ∈ (0, 2] and a matrix V , satisfying standard assumptions, let Yα,V (t), t ∈ R be a multi-
variate fBm with cmf

Rα,V (t, s) := Sα,V (t) + Sα,V (−s) − Sα,V (t− s), (2.10)

where Sα,V is defined by (2.5).

For a triplet of disjoint sets I, J , K ⊂ {1, . . . , n}, vector ν ∈ (0, 2] I ∪J ∪K and two collections
of matrices V = (Vi)i∈I∪J and W = (Wi)i∈J∪K define a multivariate additive fBm field Yν,V(t),
t ∈ Rn and a deterministic vector field dν,W(t), t ∈ Rn by

Yν,V(t) :=
∑

i∈I∪J

[
Yνi,Vi(ti) − Sνi,Vi(ti)1

]
, dν,W(t) :=

∑
i∈J∪K

|ti|νi Wi 1.

Consider also a family of matrices D = (Ci,j)i,j∈D, D ⊂ {1, . . . , n}, and set

Ck(t) :=
∑
i∈D

Ci,k t
βi/2
i , Z(t) :=

∑
k∈D

Ck(t)N k,

where N k ∼ N(0, I) are standard Gaussian vectors, independent of each other and of the fields
Yνi,Vi , i ∈ I ∪ J .

1Note that A = 0 =⇒ Aw = 0 =⇒ w⊤Aw = 0, but neither implication is reversible.
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Finally, for a compact set E ⊂ Rn define

Hν,V,W,D (E) :=

∫
Rd

e1
⊤x P {∃ t ∈ E : Yν,V(t) + Z(t) − dν,W(t) > x} dx

and
Hν,V,W,D := lim

Λ→∞
lim
S→∞

S−|I|Hν,V,W,D
([
0,S′]) , S′ = S1I + Λ1Ic

whenever the limit exists. Define also

Hν,V,W(E) := Hν,V,W,∅(E),

and similarly for Hν,V,W.

As we shall see below, for I, J , K, F from (2.6) and (2.7) and matrices from A2.1 this limit
exists and is positive and finite, provided that A2.4 and A2.5 are satisfied, see Theorem 2.1.

For an n× n matrix Ξ and vector β > 0, define

G(β,Ξ) :=

∫
Rn
+

exp

−1

2

∑
i,j

Ξi,j t
βi/2
i t

βj/2
j

 dt . (2.11)

2.2.2 Main theorem

Theorem 2.1. Let X(t), t ∈ [0,T ] ⊂ Rn be a centered Rd-valued Gaussian random field,
satisfying Assumptions A1, A2 and A3. Then

P {∃ t ∈ [0,T ] : X(t) > ub} ∼ Hν,Vw,Ww,Dw G(βI ,ΞI,I)uζ P {X(0) > ub} , (2.12)

with

ν = min{α,β}, ζ =
∑
i∈I

(
2

αi
− 2

βi

)
,

Vw =
(

diag(w)A5,i diag(w)
)
i∈I∪J

, Ww =
(

diag(w)A2,i diag(w)
)
i∈J∪K

,

Dw =
(

diag(w)Ci,k

)
i,k∈(J∪K)∩F

, Ξi,j = w⊤
[
2A2,i 1i=j + Di,j 1i,j∈F

]
w,

G defined by (2.11), (Ci,k)i,k∈(J∪K)∩F any family of matrices satisfying (2.9), and

G(βI ,ΞI,I), Hν,Vw,Ww,Dw ∈ (0,∞).

Remark 2.4. By Lemma (2.18), the matrix Ξ may be alternatively defined by

σ−2
b (τ ) − σ−2

b (0) =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
.

This is useful from the practical point of view, since to apply the theorem we first have to compute
σ−2
b (τ ).

Corollary 2.1. If the conditions of Theorem 2.1 are satisfied with F = ∅ or Di,j = 0 for all
i, j ∈ F , then

P {∃ t ∈ [0,T ] : X(t) > ub} ∼ Hν,Vw,Ww

∏
i∈I

(2 ξi)
−1/βi Γ

(
1

βi
+ 1

)
uζ P{X(0) > ub}.

If F ⊂ I, but not necessarily empty, then D = ∅ and therefore (2.12) holds with Hν,Vw,Ww .
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Extremes of vector-valued locally additive Gaussian fields

Remark 2.5. If we consider the same problem on [−T1,T2], where T1,2 ≥ 0 satisfy T1,i+T2,i > 0
for all i (so that the rectangle [−T1,T2] be of full dimension), we can obtain a result similar to
Theorem 2.1 under slightly modified assumptions. Denote

L := {i : T1,i > 0}, R := {i : T2,i > 0},

and consider the following symmetric extension of A2.1 to the negative values of ti’s:

Σ −R(t, s) ∼
n∑

i=1

[
A1,i |ti|β

′
i + A2,i |ti|βi + A3,i |si|β

′
i + A4,i |si|βi + Sαi,A5,i(ti − si)

]

+

n∑
i, j=1

A6,i,j |ti|β
′
i |sj |β

′
j .

With these assumptions we have

P {∃ t ∈ [−T1,T2] : X(t) > ub} ∼ uζ Hν,Vw,Ww,Dw(L,R)G(βI ,ΞI,I) P {X(0) > ub} ,

where

Hν,V,W,D(L,R) := lim
Λ→∞

lim
S→∞

S−|I|Hν,V,W,D
(
S′ [−1L,1R]

)
∈ (0,∞), S′ := S1I + Λ1Ic .

2.3 Double crossing probabilities

Let X(t), t ∈ [0, T ] ⊂ R be a continuous centered Gaussian process, with covariance function
r(t, s) = E {X(t)X(s)}. We want to study the probability that in a given finite time interval
the process X hits two distant barriers: one above and one below its initial point. Formally, we
study the asymptotics as u → ∞ of

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} , a, b > 0,

which we shall refer to as the double crossing probability. For our purposes, it may be conve-
niently rewritten as

P
{
∃ t ∈ [0, T ]2 : X(t) > ub

}
, X(t) = (X(t1), −X(t2))

⊤ , b = (a, b)⊤.

The problem is thus reduced to the study of a simple (not double) crossing of a two-dimensional
vector-field X(t) over [0, T ]2, which is exactly the setup of our Main Theorem 2.1.

Let us briefly show how Main Theorem 2.1 may be applied in this case. First, we should find
the maximizer of the generalized variance σ2

a,b(t) defined by

σ−2
a,b(t) = min

x≥(a,b)⊤
x⊤ Σ−1(t)x, (2.13)

where the matrix Σ(t) is given by Σ(t) = R(t, t) and

R(t, s) = E
{
X(t)X(s)⊤

}
=

(
r(t1, s1) −r(t1, s2)
−r(t2, s1) r(t2, s2)

)
, t = (t1, t2)

⊤, s = (s1, s2)
⊤.

The inverse of Σ(t) exists for all t ̸∈ {t = (t, t)⊤ : t ∈ [0, T ]} and is given by

Σ−1(t) =
1

r(t1, t1) r(t2, t2) − r2(t1, t2)

(
r(t2, t2) r(t1, t2)
r(t1, t2) r(t1, t1)

)
.
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Near the diagonal {t = (t, t)⊤ : t ∈ [0, T ]} the matrix Σ(t) is degenerate, so we need some
additional lemma to deal with the probability that the extreme event happens there. Intuitively,
such event means that a process has managed to hit both boundaries during a very short time
interval, which seems unlikely. The precise meaning to this is given by the next lemma.

Lemma 2.1. Let X(t), t ∈ [0, T ] be a centered Gaussian process with a.s. continuous sample
paths. If there exists a function f such that

E

{[
X(t + l) −X(t)

]2}
< f(l)

for all t ∈ [0, T ], l > 0 and f(l) → 0 as l → 0, then for any δ > 0 there exists ε > 0 such that

P {∃ t1, t2 ∈ [0, T ], |t1 − t2| < ε : X(t1) > au, X(t2) < −bu} = o
(
e−δu2

)
.

Unfortunately, even the problem of minimizing σ−2
b (t) over {t = (t, s)⊤ : |t− s| > ε} is too hard

in its full generality. In the next two sections we study the double crossing probabilities for two
classes of processes: stationary with positive correlation and fractional Brownian motion.

2.3.1 Double crossing probabilities: stationary case

Let X be a stationary Gaussian process with unit variance and positive correlation function
r(t, s) = ρ(|t− s|) > 0 satisfying

ρ(t) = 1 − ϑ tα + o (tα) as t → 0 (2.14)

with some ϑ > 0 and α ∈ (0, 2]. We additionally assume that ρ is strictly decreasing and
differentiable in t > 0.

We need to minimize
x21 + 2x1x2 ρ(|t1 − t2|) + x22

1 − ρ2(t1, t2)

with respect to x = (x1, x2)
⊤ subject to x ≥ (a, b)⊤, and then minimize it again, but with

respect to t sufficiently far away from the diagonal. The unique solution of the first minimization
problem in this case is x = (a, b)⊤. Therefore, we have

σ−2
a,b(t) = min

x≥(a,b)⊤
x⊤ Σ−1(t)x =

a2 + 2ab ρ(|t1 − t2|) + b2

1 − ρ2(|t1 − t2|)
.

To solve the second, we note by rewriting σ−2
a,b(t) as

σ−2
a,b(t) =

(a + b)2

1 − ρ2(|t1 − t2|)
− 2ab

1 + ρ(|t1 − t2|)

that σ−2
a,b(t) attains its minimum at the same point as ρ(|t1− t2|). Since ρ is decreasing, we have

two minimizing points t∗,1 = (0, T )⊤ and t∗,2 = (T, 0)⊤ and

σ−2
a,b(t∗,1) = σ−2

a,b(t∗,2) =
a2 + 2abρ(T ) + b2

1 − ρ2(T )
.

By Lemma 2.1 and Piterbarg inequality, we can show that for any ε > 0 we have
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P {∃ t ∈ [0,T ] : X(t) > u b}

∼ P {∃ t ∈ [0, ε] × [T − ε, T ] : X(t) > u b} + P {∃ t ∈ [T − ε, T ] × [0, ε] : X(t) > u b}

= P
{
∃ t ∈ [0, ε]2 : X1(t) > u b

}
+ P

{
∃ t ∈ [0, ε]2 : X2(t) > u b

}
,

where in the last line we performed appropriate time changes in both probabilities by introducing
X1(t) = (X(t1),−X(T − t2))

⊤ and X2(t) = (X(T − t1),−X(t2))
⊤.

In order to apply Main Theorem 2.1 to

P
{
∃ t ∈ [0, ε]2 : X1(t) > u b

}
and P

{
∃ t ∈ [0, ε]2 : X2(t) > u b

}
,

we need to derive asymptotic expansions of the corresponding covariances. This is done in the
following lemma.

Lemma 2.2. The random field X1 satisfies the assumptions A1 to A3 of Theorem 2.1 with

α1 = α2 = α, β1 = β2 = 1, F = ∅

and

A2,1 = A⊤
2,2 = −ρ′(T )

(
0 1
0 0

)
, A5,1 = ϑ

(
1 0
0 0

)
, A5,2 = ϑ

(
0 0
0 1

)
.

Moreover,

w = Σ−1(0) (a, b)⊤ =
1

1 − ρ2(T )

(
1 ρ(T )

ρ(T ) 1

)(
a
b

)
=

1

1 − ρ2(T )

(
a + bρ(T )
b + aρ(T )

)
Assumption A2.4 is satisfied with ξi given by

ξ1 = w⊤A2,1w = ξ2 = w⊤A2,2w =
−ρ′(T )(a + bρ(T ))(b + aρ(T ))

(1 − ρ2(T ))2
> 0,

and A2.5 with κi given by

κ1 = w⊤A5,1w = κ2(w) = w⊤A5,2w =
C(b + aρ(T ))2

(1 − ρ2(T ))2
> 0.

Using Lemma 2.1, and noting that F = ∅, we may apply the first assertion of Corollary 2.1
instead of Theorem 2.1, and obtain the following theorem on the asymptotics of double crossing
probabilities.

Theorem 2.2. Let X(t), t ∈ [0, T ] be a centered a.s. continuous stationary Gaussian process
with unit variance and positive strictly decreasing and differentiable correlation function ρ(t) > 0
which satisfies (2.14) with some ϑ > 0 and α ∈ (0, 2]. Define

p(u) := P {X(0) > au, X(T ) < −bu} .

Then

Pickands case If α < 1,

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} ∼ CH2 u4/α−2 p(u),

where

H = lim
S→∞

1

S
E

{
sup

t∈[0,S]
eBH(t)−t2H/2

}
, C =

21+2/α θ2/α

(ρ′(T ))2

(
(1 − ρ2(T ))2

(a + bρ(T ))(b + aρ(T ))

)2−2/α

.
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Piterbarg case If α = 1,

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} ∼ 2 H̃1 H̃2 p(u),

where

H̃k = lim
S→∞

E

{
sup

t∈[0,S]
eB(t)−(1+λk)t/2

}
, λ1 =

−ρ′(T )w2

2w1 ϑ
, λ2 =

−ρ′(T )w1

2w2 ϑ
> 0.

Talagrand case If α > 1,

P {∃ t, s ∈ [0, T ] : X(t) > au, X(s) < −bu} ∼ 2 p(u).

2.3.2 Double crossing probabilities: fBm case

In this section we study the double crossing probability (2.1) in case when X is a fractional
Brownian motion BH , that is, a Gaussian process associated to the following covariance function:

r(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

As explained in Section 2.3, we should first minimize σ−2
b (t), defined in (2.13), in x subject to

x ≥ (a, b)⊤, and then minimize it again, but with respect to t sufficiently far away from the
diagonal. Minimization in x yields x = (a, b)⊤, and therefore we have

σ−2
a,b(t) = min

x≥(a,b)⊤
x⊤ Σ−1(t)x =

a2 t2H1 + 2ab r(t1, t2) + b2 t2H2
(t1t2)2H − r2(t1, t2)

.

For the second minimization, we have the following lemma.

Lemma 2.3. There exists t∗ ∈ (0, T ), such that the function σ−2
a,b(t) defined on {t ∈ [0, T ]2 : |t1−

t2| > ε}, ε > 0 attains,

1. If a < b, its unique minimum at point t∗,1 = (T, t∗)
⊤

2. If a > b, its unique minimum at point t∗,2 = (t∗, T )⊤

3. If a = b, its minimum at exactly two points t∗,1 = (T, t∗)
⊤ and t∗,2 = (t∗, T )⊤

Moreover, we have

σ−2
b (t∗,1) − σ−2

b (t∗,1 − τ ) ∼ −κ1 τ1 − κ2 τ
2
2 and σ−2

b (t∗,2) − σ−2
b (t∗,2 − τ ) ∼ −κ2 τ

2
1 − κ1 τ2

with

κ1 := −
∂σ−2

b

∂t1
(t∗,1) = −

∂σ−2
b

∂t2
(t∗,2) > 0, κ2 :=

∂2σ−2
b

∂t22
(t∗,1) =

∂2σ−2
b

∂t21
(t∗,2) > 0.

By Lemma 2.1 and Piterbarg inequality (2.25), we can show that for any ε > 0 we have

P {∃ t ∈ [0,T ] : X(t) > u b}

∼ P {∃ t ∈ [T − ε, T ] × [t∗ − ε, t∗ + ε] : X(t) > u b}

+ P {∃ t ∈ [t∗ − ε, t∗ + ε] × [T − ε, T ] : X(t) > u b}

= P {∃ t ∈ [0, ε] × [−ε, ε] : X1(t) > u b}

+ P {∃ t ∈ [−ε, ε] × [0, ε] : X2(t) > u b} ,

(2.15)
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where in the last line we performed appropriate time changes in both probabilities by introducing
X1(t) = (X(T − t1),−X(t2 − t∗))

⊤ and X2(t) = (X(t1 − t∗),−X(T − t2))
⊤.

Next, assume that a > b. Then we can use the Piterbarg inequality (2.25) again to show that

P {∃ t ∈ [−ε, ε] × [0, ε] : X2(t) > u b} = o
(
P {∃ t ∈ [0, ε] × [−ε, ε] : X1(t) > u b}

)
. (2.16)

Intuitively this means that the process is less likely to first hit a higher barrier and then hit the
lower than the other way around. If a = b, the two probabilities are equal, which is clear from
the symmetry. Combining (2.15) and (2.16), we obtain that if a ≥ b, then

P {∃ t ∈ [0,T ] : X(t) > ub} ∼ (1 + 1a=b) P {∃ t ∈ [0, ε] × [−ε, ε] : X1(t) > ub} .

In order to apply Theorem 2.1 to P
{
∃ t ∈ [0, ε]2 : X1(t) > u b

}
, we need to derive asymptotic

expansions of the corresponding covariance matrix R(t, s) as t and s tend to zero. This is done
in the following lemma.

Lemma 2.4. The random field X1(t) satisfies the assumptions A1 to A3 of Theorem 2.1 with

α1 = α2 = 2H, β1 = 1, β2 = 2, β′
2 = 1, F = {2},

and

A2,1 = H

(
−T 2H−1 T 2H−1 − |T − t∗|2H−1

0 0

)
,

A1,2 = H

(
0 0

t2H−1
∗ + |T − t∗|2H−1 −t2H−1

∗

)
,

A2,2 = H

(
H − 1

2

)(
0 0

t2H−2
∗ + |T − t∗|2H−2 −t2H−2

∗

)
,

A5,1 =
1

2

(
1 0
0 0

)
, A5,2 =

1

2

(
0 0
0 1

)
, A6,2,2 = 0.

Moreover,

w(t) = Σ−1(t) b =
1

t2H1 t2H2 − r2(t1, t2)

(
t2H2 a + r(t1, t2) b

r(t1, t2) a + t2H1 b

)
,

and
A1,1w ̸= 0, A1,2w(t) ∼ 0, w⊤A5,iw > 0, w⊤A2,iw > 0, i = 1, 2.

Note that 2 ∈ I. Since 2 is also the only element of F , it follows that F ⊂ I, and we can use
the second assertion of Corollary 2.1 instead of Theorem 2.1. Applying it with the data from
Lemmata 2.3 and 2.4, we obtain the following result.

Theorem 2.3. Let a ≥ b and set

p(u) := (1 + 1a=b) P {BH(T ) > au, BH(t∗) < −bu} .

Then, with κ1 and κ2 from Lemma 2.3, we have the following results.

If H < 1/2,

P {∃ t, s ∈ [0, T ] : BH(t) > au, BH(s) < −bu} ∼ 9π w
1/H
1 w

1/H
2 H2

2κ
1/2
1 κ

1/2
2

u2/H−3 p(u),

where

H = lim
S→∞

1

S
E

{
sup

t∈[0,S]
eBH(t)−t2H/2

}
.
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If H = 1/2,

P {∃ t, s ∈ [0, T ] : BH(t) > au, BH(s) < −bu} ∼ 3
√
π w

1/H
2 HH̃

κ
1/2
2

u p(u)

where

H̃ = lim
Λ→∞

E

{
sup

t∈[0,Λ]
eB(t)−λt

}
∈ (0,∞).

with2

λ =
1

2
+ HT 2H−1w1 −H

[
T 2H−1 + (T − t∗)

2H−1
]
w2

If H > 1/2,

P {∃ t, s ∈ [0, T ] : BH(t) > au, BH(s) < −bu} ∼ 3
√
π w

1/H
2 H

κ
1/2
2

u1/H−1 p(u).

Remark 2.6. Note that κ2 ̸= 2w⊤A2,2w, as it were in [3, Remark 2.3, (2.15)]. Using
Lemma 2.18, we can show that κ2 = 2w⊤A2,2w + w⊤A1,2 Σ−1A⊤

1,2w.

2.4 Auxiliary results

This Section consists of known results, taken from [3] and reproduced here for the reader’s
convenience.

2.4.1 Quadratic programming problem

For a given non-singular d× d real matrix Σ we consider the quadratic programming problem

ΠΣ(b) : minimize x⊤ Σ−1 x under the linear constraint x ≥ b. (2.17)

Below J = {1, . . . , d} \ I can be empty; the claim in (2.19) is formulated under the assumption
that J is non-empty.

Lemma 2.5. Let d ≥ 2 and Σ a d× d symmetric positive definite matrix with inverse Σ−1. If
b ∈ Rd \ (−∞, ]d, then ΠΣ(b) has a unique solution b̃ and there exists a unique non-empty index
set I ⊂ {1, . . . , d} with m ≤ d elements such that

b̃I = bI ̸= 0I (2.18)

b̃J = ΣJI(ΣII)−1bI ≥ bJ , (ΣII)−1bI > 0I , (2.19)

min
x≥ b

x⊤ Σ−1 x = b̃⊤ Σ−1 b̃ = b⊤I (ΣII)−1 bI > 0, (2.20)

max
z∈[0,∞)d : z⊤b>0

(z⊤b)2

z⊤ Σ z
=

(w⊤b)2

w⊤ Σw
= min

x≥ b
x⊤ Σ−1 x, (2.21)

with w = Σ−1 b̃ satisfying wI = (ΣII)−1bI > 0I , wJ = 0J .

2It can be shown that λ > 1/2. Moreover, it may be represented as λ = 1/2 + κ1/w1.
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Denote the solution map of the quadratic programming problem (2.17) by P : Σ−1 7→ b̃ with b̃
the unique solution to ΠΣ(b). The next result is a special case of [24, Theorem 3.1].

Lemma 2.6. P is Lipshitz continuous on compact subset of the space of real d × d symmetric
positive definite matrices.

We will also need the following supplementary lemma on quadratic optimization.

Lemma 2.7. Let E be a compact subset of Rn and (Σ(t))t∈E be a uniformly positive definite
family of symmetric d× d matrices such that the map t 7→ Σ(t) is continuous. Denote by I(t),
K(t) and L(t) the three index sets of ΠΣ(t)(b), introduced in Lemma 2.5. Then the following
assertions hold:

1. There exist three finite disjoint locally closed covers (AV )V ∈2d , (BV )V ∈2d and (CU,V )U,V ∈2d
of E, such that

I(t) =
∑
U∈2d

U c 1AU
(t), L(t) =

∑
V ∈2d

V c 1BV
(t), K(t) =

∑
U, V ∈2d

U ∩ V 1CU,V
(t).

2. The maps t 7→ I(t) and t 7→ L(t) are lower hemicontinuous. Moreover, for all t ∈ E there
exists ε(t) > 0 such that for all s such that |t− s| < ε(t) holds I(t) ⊂ I(s).

Remark 2.7. Since I(t)∪K(t)∪L(t) = {1, . . . , d}, it follows that the set-valued map t 7→ K(t)
is upper hemicontinuous.

Remark 2.8. Note that if the upper hemicontinuity property holds uniformly in t, that is if ε(t)
can be taken independent of t, then t 7→ J(t) is constant.

2.4.2 Borell-TIS and Piterbarg inequalities

Lemma 2.8. Let Z(t), t ∈ E ⊂ Rk be a separable centered d-dimensional vector-valued Gaussian
random field having components with a.s. continuous paths. Assume that Σ(t) = E

{
Z(t)Z(t)⊤

}
is non-singular for all t ∈ E. Let b ∈ Rd \ (−∞, 0]d and define σ2

b(t) as in (2.4). If σ2
b =

supt∈E σb2(t) ∈ (0,∞), then there exists some positive constant µ such that for all u > µ

P {∃ t ∈ E : Z(t) > ub} ≤ exp

(
−(u− µ)2

2σ2
b

)
. (2.22)

If further for some C ∈ (0,∞) and γ ∈ (0, 2]k

∑
1≤i≤k

E
{

(Zi(t) − Zi(s))2
}
≤ C

k∑
m=1

|tm − sm|γm (2.23)

and ∥∥Σ−1(t) − Σ−1(s)
∥∥
F
≤ C

k∑
m=1

|tm − sm|γm (2.24)

hold for all t, s ∈ E, then for all u positive

P {∃ t ∈ E : Z(t) > ub} ≤ C∗ mes(E)u2d/γ−1 exp

(
− u2

2σ2
b

)
, (2.25)

where C∗ is some positive constant not depending on u and γ = maxm γm. In particular, if σ2
b(t),

t ∈ E is continuous and achieves its unique maximum at some fixed point t∗ ∈ E, then (2.25) is
still valid if (2.23) and (2.24) are assumed to hold only for all t, s ∈ E in an open neighborhood
of t∗.
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2.4.3 Local Pickands lemma

Let us introduce the following assumptions.

B1 For all large u and all τ ∈ Qu, the matrix Σu,τ = Ru,τ (0,0) is positive definite and

lim
u→∞

sup
τ∈Qu

u ∥Σ − Σu,τ∥F = 0 (2.26)

holds for some positive definite matrix Σ.

B2 There exists a continuous Rd-valued function d(t), t ∈ E and a continuous matrix-valued
function K(t, s), (t, s) ∈ E × E, such that

lim
u→∞

sup
τ∈Qu, t∈E

u ∥Σu,τ −Ru,τ (t,0)∥F = 0, (2.27)

lim
u→∞

sup
τ∈Qu, t∈E

∣∣∣u2 [I −Ru,τ Σ−1
u,τ

]
b̃− d(t)

∣∣∣ = 0 (2.28)

and

lim
u→∞

sup
τ∈Qu

sup
t, s∈E

∥∥∥u2 [Ru,τ (t, s) −Ru,τ (t,0) Σ−1
u,τ Ru,τ (0, s)

]
−K(t, s)

∥∥∥
F

= 0. (2.29)

B3 There exist positive constants C and γ ∈ (0, 2]k such that for any t, s ∈ E

sup
τ∈Qu

u2 E
{
|Xu,τ (t) −Xu,τ (s)|2

}
≤ C

k∑
m=1

|tm − sm|γm . (2.30)

For Y (t), t ∈ E a centered Rd-valued Gaussian random field with a.s. continuous sample paths
with cmf K(s, t), (s, t) ∈ E × E and an Rd-valued function d define below

HY ,d(E) =

∫
Rd

e1
⊤xP {∃ t ∈ E : Y (t) − d(t) > x} dx . (2.31)

Lemma 2.9. Suppose that Xu,τ (t), t ∈ E, u > 0, τ ∈ Qu satisfy B1, B2 and B3. Let
w = Σ−1 b̃, where b̃ is the unique solution of ΠΣ(b). If Yw(t), t ∈ E has cmf R(t, s) =
diag(w)K(t, s) diag(w) and dw(t) = diag(w)d(t), then we have

lim
u→∞

sup
τ∈Qu

∣∣∣∣P {∃ t ∈ E : Xu,τ (t) > ub}
P {Xu,τ (0) > ub}

−HYw,dw(E)

∣∣∣∣ = 0. (2.32)

Remark 2.9. If we suppose stronger assumptions on Σu,τ , for instance

lim
u→∞

sup
τ∈Qu

∥∥∥u2 [Σ − Σu,τ

]
− Ξ

∥∥∥
F

= 0,

then as u → ∞
P {Xu,τ (0) > ub} ∼ e−w⊤ Ξw/2P {N > ub} ,

where N is a centered Gaussian vector with covariance matrix Σ.
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2.4.4 Integral estimate

Lemma 2.10. If a family of Hölder continuous Gaussian random fields χx(t), t ∈ [0,Λ] mea-
surable in x ∈ Rd satisfies

sup
F⊂{1,...,d}

sup
t∈[0,Λ]

w⊤
F E {χx,F (t)} ≤ G + ε

d∑
j=1

|xj |

and
sup

F⊂{1,...,d}
sup

t∈[0,Λ]
Var

{
w⊤

F χx,F (t)
}
≤ σ2

with some constants w > 0, σ2 > 0, G ∈ R and small enough ε > 0, then there exist constants
C, c > 0 such that the following inequality holds:∫

Rd

ew
⊤x P {∃ t ∈ [0,Λ] : χx(t) > x} dx ≤ Cec(G+σ2).

2.5 Proof of the main theorem

2.5.1 Log-layer bound

Lemma 2.11 (Log-layer bound). Suppose X satisfies Assumptions A1 to A3. Then there exist
positive constants c, u0 and Λ0 such that for Λ ≥ Λ0 and u ≥ u0

P
{
∃ t ∈ [0, δu] \ u−2/β[0,Λ] : X(t) > ub

}
≤ cP {X(0) > ub} exp

(
−1

8

n∑
i=1

ξi Λβi
i

)
,

where ξi = w⊤A2,iw > 0 by A2.4.

Proof. For simplicity assume that I = {1, . . . , d}, hence b̃ = b. The idea of the proof is to split
the log-layer [0, u−2/β ln2/β u] \ u−2/β[0,Λ] into tiny pieces

Λu−2/ν [k,k + 1], k ∈ Qu =
⋃
L≠∅

Qu(L),

where the union is taken over non-empty subsets L of {1, . . . , n} and

Qu(L) =
{
k ∈ Zn

+ : ki ≥ u2/νi−2/βi/Λi, i ∈ L
}
∩
[
0, u2/ν−2/β/Λ

]
.

Next, derive a suitable uniform in k ∈ Qu bound for the Pickands intervals’ probabilities

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
, (2.33)

and then sum them up to obtain an upper bound on the layer’s probability. To this end, let us
define a family of random fields

Xu,k(t) = X
(
u−2/ν (Λk + t)

)
, k ∈ Qu, t ∈ [0,Λ],

and denote the corresonding covariance and variance matrices by

Ru,k(t, s) = R
(
u−2/ν (Λk + t) , u−2/ν (Λk + s)

)
, Σu,k = Σ

(
Λu−2/νk

)
.
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Next, apply the law of total probability

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
= u−d

∫
Rd

P {∃ t ∈ [0,Λ] : χu,k(t) > x}φΣu,k

(
ub− x

u

)
dx,

(2.34)

where χu,k(t) denotes the conditional process u (Xu,k(t) − ub) +x given Xu,k(0) = ub−u−1x.

First, bound φΣu,k
using (2.77)

ln

(
φΣu,k

(
ub− x

u

)
φΣ(ub)

)
≤ −1

2
u2 b⊤

[
Σ−1
u,k − Σ−1

]
b + b⊤Σ−1

u,k x.

Plugging this into (2.34) and noting that u−d φΣ(ub) ∼ P {X(0) > ub}, we obtain the following
bound:

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
≤ AB P {X(0) > ub} , (2.35)

where

A := exp

(
−1

2
u2 b⊤

[
Σ−1
u,k − Σ−1

]
b

)
,

B :=

∫
Rd

eb
⊤Σ−1

u,k x P {∃ t ∈ [0,Λ] : χu,k(t) > x} dx .

At this point, we split the proof in four parts: bounding A, bounding B, comparing the bounds
and summing them in k.

Bounding A. By (2.79), we have

b⊤
[
Σ−1(τ ) − Σ−1

]
b =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
, (2.36)

where
Ξi,j = w⊤D̃i,j w, D̃i,j = 2A2,i 1i=j +

[
A6,i,j + A1,iΣ

−1A⊤
1,j

]
1i,j∈F ,

Using (2.82), we can bound (2.36) for τ close enough to 0 by

b⊤
[
Σ−1(τ ) − Σ−1

]
b =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
≥ 3

2

n∑
i=1

w⊤A2,iw τβi
i .

Plugging τ = u−2/νΛk, we obtain that for all large enough u holds

−1

2
u2 b⊤

[
Σ−1
u,k − Σ−1

]
b ≤ −3

4

n∑
i=1

w⊤A2,iw u2−2βi/νi (Λiki)
βi . (2.37)

Bounding B. As a next step, we show that∫
Rd

eb
⊤Σ−1

u,kx P {∃ t ∈ [0,Λ] : χu,k(t) > x} dx ≤ c1e
c2(G+σ2) (2.38)

using Lemma 2.10. Here G ∈ R and σ2 > 0 are any such numbers that for all small enough ε
hold

sup
F⊂{1,...,d}

sup
t∈[0,Λ]

w⊤
F E {χu,k,F (t)} ≤ G + ε

d∑
j=1

|xj |,

sup
F⊂{1,...,d}

sup
t∈[0,Λ]

Var
{
w⊤

F χu,k,F (t)
}
≤ σ2.

(2.39)
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For our current needs they also must be uniform in k. The following estimate for G + σ2 is
proven in the Appendix (see Section 2.6.4)

G+σ2 = c5

n∑
i=1

[
u2−2βi/νiΛβi

i

[
(ki∨1)βi−1+ε−1 (ki∨1)βi−2+ε

(
kβi
i + 1

) ]
+u2−2αi/νiΛαi

i

]
. (2.40)

Comparing the bounds. Combining the bound (2.37) for A, the bound (2.38) for B with the
G + σ2 estimated in (2.40), and plugging all this into the AB bound (2.35), we arrive at the
following inequality:

ln

(
P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
c1 P {X(0) > ub}

)

≤ −3

4

n∑
i=1

w⊤A2,iw u2−2βi/νi (Λiki)
βi + c6

n∑
i=1

[
u2−2βi/νiΛβi

i

[
(ki ∨ 1)βi−1

+ ε−1 (ki ∨ 1)βi−2 + ε
(
kβi
i + 1

) ]
+ u2−2αi/νiΛαi

i

]
. (2.41)

Setting ε = w⊤A2,iw/4 c6, we find that the i-th term is at most

u2−2βi/νi Λβi
i

[
−w⊤A2,iw

2
kβi
i + c6

[
(ki ∨ 1)βi−1 + ε−1(ki ∨ 1)βi−2 + ε

]]
+ c6 u

2−2αi/νi Λαi
i .

(2.42)
Note that if ki = 0, which is only possible if i ∈ Lc, the equation (2.42) reads:

c7 u
2−2βi/νi Λβi

i + c6 u
2−2αi/νi Λαi

i .

If ki ≥ 1, then ki ∨ 1 = ki, and (2.42) is at most

−w⊤A2,iw

4
kβi
i u2−2βi/νi Λβi

i + c6 u
2−2αi/νi Λαi

i (2.43)

under the following conditions:

1. if i ∈ L∩ I, ki ≥ u2/αi−2/βi/Λi → ∞, and we can choose u0 such that (2.43) holds for all;
ki ≥ 1 and u ≥ u0

2. if i ∈ Lc ∪ Ic, there exists k0,i, independent of u, such that (2.43) holds for ki ≥ k0,i.

Combined upper bound for k ≥ k0. Denote

k0,i = k0,i ∨ 1 for i ∈ Ic and k0,i = u2/νi−2/βi for i ∈ L ∩ I.

We have shown that there exits u0 and such that if u ≥ u0 and k ≥ k0, then the left-hand side
of (2.41) is at most

−1

4

n∑
i∈L∪I

[
u2−2βi/νi Λβi

i w⊤A2,iw kβi
i + c6 u

2−2αi/νi Λαi
i

]
+ c8.
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Hence,

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
c9 P {X(0) > ub}

≤
n∏

i=1

exp

(
−w⊤A2,iw

4
u2−2βi/νi (Λiki)

βi + c3u
2−2αi/νi Λαi

i

)
.

(2.44)

Let us now show how to cover k’s with 1 ≤ ki ≤ k0,i, i ∈ Ic. Assume, for the sake of simplicity,
that k is such that there is exactly one i such that 1 ≤ ki ≤ k0,i. The general case can be
addressed in a similar way. Note that so far we did not assume anything about Λi except
positivity. We want to exploit this fact. To this end, set Λ̃i := Λi/k0,i and x′ = (xj)j ̸=i.
By (2.44) we have that

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}

≤
k0,i(ki+1)−1∑

j=k0,iki

P

{
∃ ti ∈ Λ̃i u

−2/νi [j, j + 1]

∃ t′ ∈ Λ′u−2/ν′i [k′,k′ + 1′]
: X(t) > ub

}

Applying (2.44) to the summands, we find that the same bound (2.44) holds true in this case,
but with a different constant.

Bound improvement for ki = 0. Allowing ki = 0 for some i ∈ Lc, we obtain

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
c9 P {X(0) > ub}

≤
n∏

i=1

exp

(
−w⊤A2,iw

4
u2−2βi/νi (Λiki)

βi + c3u
2−2αi/νi Λαi

i

)

×
∏

j∈Lc : kj=0

exp
(
c6u

2−2βj/νjΛ
βj

j

)
.

Note that if j ∈ Lc∩I, then the corresponding factor is bounded by a constant, since u2−2βj/νj →
0. If i ∈ Ic, set Λ̃i = 1 and apply the same trick as above. That is, slice in the i-th direction
and sum back:

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}

≤
Λj+1∑
j=0

P

{
∃ ti ∈ u−2/νi [j, j + 1]

∃ t′ ∈ Λ′u−2/ν′i [k′,k′ + 1′]
: X(t) > ub

}
.

Since Λ̃i = 1, the product in j ∈ Lc : kj = 0 becomes a constant. Other factors remain the same,
except for the i-th, which gives

Λi∑
j=0

exp

(
−w⊤A2,iw

4
jβi

)
≤ c10 exp

(
−w⊤A2,iw

4

)
= c11.

Summing up the bounds in k. Summing (2.44) in k, we obtain
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∑
k∈Qu(L)

P
{
∃ t ∈ Λu−2/ν [k,k + 1] : X(t) > ub

}
c12 P {X(0) > ub}

≤
∏
i∈I

∑
ki ̸=0

exp

(
−w⊤A2,iw

4
u2−2βi/νi (Λiki)

βi + c3 Λαi
i

)

×
∏
j∈Ic

∑
kj ̸=0

exp

(
−w⊤A2,j w

4
(Λjkj)

βj + c3u
2−2αj/βj Λ

αj

j

)
.

If i ∈ I, then

∑
ki≥u2/αi−2/βi

exp

(
−1

4
u2−2βi/νi w⊤A2,iw (Λiki)

βi + c3 Λαi
i

)

≤ c5 exp

(
−w⊤A2,iw

4
Λβi
i + c3 Λαi

i

)
≤ c5 exp

(
−1

8
w⊤A2,iw Λβi

i

)
,

where the last inequality is true for Λi ≥ Λ0,i with Λβi−αi
0,i w⊤A2,iw ≥ 8 c3. Same upper bound

works for i ∈ Ic. Indeed, u2−2αj/βjΛ
αj

j may be bounded by a constant and

∑
kj ̸=0

exp

(
−w⊤A2,jw

4
(Λjkj)

βj

)
≤ exp

(
−w⊤A2,jw

8
Λ
βj

j

)
.

Remark 2.10. Note that w⊤A2,iw > 0 has to be satisfied for all i’s, because otherwise one of
the sums in ki (as, for example, the last sum of the proof) may be infinite.

2.5.2 Double sum bound

Define for τ ,λ,S ∈ Rn
+ the double events’ probabilities by

Pb(τ ,λ,S) := P

∃ t ∈ u−2/ν [τ , τ + S] : X(t) > ub,

∃ s ∈ u−2/ν [λ,λ + S] : X(s) > ub

 . (2.45)

Lemma 2.12 (Double sum bound). Let double events’ displacements τ , λ ∈ [0,Nu] be such
that

1. There is no offset in Piterbarg and Talagrand type coordinates: τJ∪K = λJ∪K = 0J∪K.

2. There exists a (possibly empty) subset of Pickands type coordinates I ′ ⊂ I in which there is
no offset: τI′ = λI′ .

3. The offset in the remaining Pickands type coordinates I2 := I \ I ′ is strictly greater than S:
λI2 − τI2 > SI2.

Then, there exists u0 ≥ 0 and S0 > 0 such that for all u ≥ u0 and S ≥ S0 holds

Pb(τ ,λ,S)

Hu(τ ) P {X(0) > ub}
≤ C

∏
i∈J∪K

ecS
βi
i

∏
i∈I′

Si

∏
i∈I2

[
Si

λi − τi − Si

]2
exp

(
−κi

64
(λi − τi − Si)

αi

)

31



Extremes of vector-valued locally additive Gaussian fields

with some constants C, c > 0 and

Hu(τ ) = exp

−1

4

∑
i∈I2

ξi τ
βi
i u2−2βi/νi

 .

Remark 2.11. We want to stress the fact that the conditions of the lemma demand that there be
no Pickands type coordinates i ∈ I with offsets smaller than Si, except those in which the offset
is zero. This is not a coincidence, since the adjacent intervals are to be dealt with differently
(see proof of Theorem 2.1 for details). Note also that if I ′ = I, the assertion of the lemma is
trivial.

Proof. For simplicitly assume that I = {1, . . . , d}, hene b̃ = b. Next, note that if X(t) and
X(s) exceed ub, then their sum exceeds 2ub:

Pb(τ ,λ,S) ≤ P
{
∃ t ∈ u−2/ν [τ , τ + S], ∃ s ∈ u−2/ν [λ,λ + S] : X(t) + X(s) > 2ub

}
= P {∃ t, s ∈ [0,S] : Xu,τ ,λ(t, s) > ub}

where
Xu,τ ,λ(t, s) =

1

2

(
X(u−2/ντ + u−2/νt) + X(u−2/νλ + u−2/νs)

)
.

Henceforth, we shall seek a bound of the latter probability. To this end, we employ an idea
analogous to that of the proof of Lemma 2.11: first, apply the law of total probability

P {∃ t, s ∈ [0,S] : Xu,τ ,λ(t, s) > ub}

= u−d

∫
Rd

P {∃ t, s ∈ [0,S] : χu,τ ,λ(t, s) > x}φΣu(τ ,λ)

(
ub− x

u

)
dx,

(2.46)

where the conditional random field is defined by

χu,τ ,λ(t, s) = u
(
Xu,τ ,λ(t, s) −Xu,τ ,λ(0,0)

∣∣∣ Xu,τ ,λ(0,0) = ub− x

u

)
and Σu(τ ,λ) is the variance matrix:

Σu(τ ,λ) = E
{
Xu,τ ,λ(0,0)Xu,τ ,λ(0,0)⊤

}
.

Next, bounding the exponential prefactor similarly to (2.77) as follows:

ln

(
φΣu(τ ,λ)(ub− u−1x)

φΣ(ub)

)
≤ −1

2
u2 b⊤

[
Σ−1
u (τ ,λ) − Σ−1

]
b + b⊤Σ−1

u (τ ,λ)x,

and using
P{X(0) > ub} ∼ u−d φΣ(ub),

we obtain
P {∃ t, s ∈ [0,S] : Xu,τ ,λ(t, s) > ub} ≤ AB P{X(0) > ub}, (2.47)

where

A := exp

(
−1

2
u2 b⊤

[
Σ−1
u (τ ,λ) − Σ−1

]
b

)
, (2.48)
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B :=

∫
Rd

exp
(
b⊤Σ−1

u (τ ,λ)x
)

P {∃ t, s ∈ [0,S] : χu,τ ,λ(t, s) > x} dx . (2.49)

At this point we split the proof in three parts: bounding A, bounding B and comparing the
bounds.

Bounding A. By (2.107), we have

b⊤
[
Σ−1(τ ,λ) − Σ−1

]
b ∼

n∑
i=1

[
w⊤A2,iw

[
τβi
i + λβi

i

]
+

w⊤A5,iw

2
|λi − τi|αi

]

+
1

4

∑
i,j∈F

Ξi,j

[
τ
βi/2
i λ

βj/2
j + λ

βi/2
i τ

βj/2
j + τ

βi/2
i τ

βj/2
j + λ

βi/2
i λ

βj/2
j

]
with the error of order

o

(
n∑

i=1

[
τβi
i + λβi

i + |λi − τi|αi

])
.

Using (2.82), we find that

b⊤
[
Σ−1(τ ,λ) − Σ−1

]
b ≥ 1

2

n∑
i=1

[
w⊤A2,iw

[
τβi
i + λβi

i

]
+

w⊤A5,iw

2
|λi − τi|αi

]
for τ and λ sufficiently close to 0. Hence,

− 1

2
u2 b⊤

[
Σ−1
u (τ ,λ) − Σ−1

]
b ≤ −1

4

n∑
i=1

[
u2−2βi/νi w⊤A2,iw

[
τβi
i + λβi

i

]

+ u2−2αi/νi
w⊤A5,iw

2
|λi − τi|αi

]
(2.50)

Bounding B. As in the proof of Lemma 2.11, our next step consists in deriving a bound for
the integral ∫

Rd

eb
⊤Σ−1

u (τ ,λ)x P {∃ t, s ∈ [0,S] : χu,τ ,λ(t, s) > x} dx ≤ c1e
c2(G+σ2), (2.51)

using Lemma 2.10. Here G ∈ R and σ2 > 0 are any such numbers that for all small enough ε
the following two inequalities hold:

sup
F⊂{1,...,d}

sup
t∈[0,Λ]

w⊤
F E {χu,τ ,λ,F (t, s)} ≤ G + ε

d∑
j=1

|xj |,

sup
F⊂{1,...,d}

sup
t∈[0,Λ]

Var
{
w⊤

F χu,τ ,λ,F (t)
}
≤ σ2.

(2.52)

For our current needs they also must be uniform in k. The following estimate for G + σ2 is
proven in the Appendix (see Section 2.6.5):

G + σ2 = c1

n∑
i=1

[
u2−2αi/νi

[
Sαi
i + Si ((λi − τi) ∨ Si)

αi−1 + ε(λi − τi)
αi

]
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+ u2−2βi/νi
[
Si (λi ∨ Si)

βi−1 + ε (λi ∨ Si)
βi + ε−1 S2

j (λj ∨ Sj)
βj−2

]]
. (2.53)

Comparing the bounds. Combining (2.50) for A, the bound (2.51) for B with G + σ2 given
by (2.53), and plugging all this into the AB bound (2.47), we arrive at the following inequality:

ln

(
Pb(τ ,λ,S)

P{X(0) > ub}

)

≤ −1

4

n∑
i=1

[
u2−2βi/νi w⊤A2,iw

[
τβi
i + λβi

i

]
+ u2−2αi/νi

w⊤A5,iw

4
(λi − τi)

αi

]

+ c1

n∑
i=1

[
u2−2αi/νi

[
Sαi
i + Si ((λi − τi) ∨ Si)

αi−1 + ε(λi − τi)
αi

]

+u2−2βi/νi
[
Si (λi ∨ Si)

βi−1 + ε (λi ∨ Si)
βi + ε−1 S2

j (λj ∨ Sj)
βj−2

]]
.

Let us exclude the terms

lnHu(τ ) := −1

4

n∑
i=0

w⊤A2,iw u2−2βi/νi τβi
i

from further considerations, since it will be useful for us as it is. Note that Hu will appear
without alterations in conclusion of the lemma. Setting

ε = min

{
w⊤A5,iw

32 c1
,
w⊤A2,iw

8 c1

}
,

we find that that the i-th term is at most

u2−2βi/νi

[
−w⊤A2,iw

8
λβi
i + c1

[
Si (λi ∨ Si)

βi−1 + ε−1 S2
j (λj ∨ Sj)

βj−2
]]

+ u2−2αi/νi

[
−w⊤A5,iw

32
(λi − τi)

αi + c1

[
Sαi
i + Si ((λi − τi) ∨ Si)

αi−1
]]

. (2.54)

Case τi = λi = 0. By assumptions of the lemma, this happens if and only if i ∈ K ∪ J . The
right-hand side of (2.54) reads:

c2 S
βi
i + c3 u

2−2αi/νi Sαi
i

with some new c2, c3 > 0. This bound can be further simplified if we note that for i ∈ K the
second term tends to zero as u → ∞ for a fixed Si. Hence, this contribution is at most

c2 S
βi
i + c4.

Case λi = τi ̸= 0. By assumptions of the lemma, this happens if and only if i ∈ I ′ ⊊ I. Note
that this set may be empty. The right-hand side of (2.54) reads:

u2−2βi/νi

[
−w⊤A2,iw

4
λβi
i + c1

[
Si (λi ∨ Si)

βi−1 + ε−1 S2
j (λj ∨ Sj)

βj−2
]]

+ c4 S
αi
i .
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There exists Ni such that for all λi ≥ Ni Si this contribution may be bounded from above by

−w⊤A2,iw

8
u2−2βi/νi λβi

i + c4 S
αi
i .

Case λi − τi > Si. By assumptions of the lemma, this condition holds for all i ∈ I \ I ′, and
this set is non-empty. The right-hand side of (2.54) reads:

u2−2βi/νi

[
−w⊤A2,iw

4
λβi
i + c1

[
Si λ

βi−1
i + ε−1 S2

j λ
βj−2
j

]]

+

[
−w⊤A5,iw

32
(λi − τi)

αi + c5Si (λi − τi)
αi−1

]
.

There exists Ni such that for all λi − τi ≥ NiSi this contribution is at most

−w⊤A2,iw

8
u2−2βi/νi λβi

i − w⊤A5,iw

64
(λi − τi)

αi .

Combined bound. We have obtained the following inequality: if

λi ≥ Ni Si for i ∈ I ′, and λi − τi ≥ Ni Si for i ∈ I \ I ′, (2.55)

then

ln

(
Pb(τ ,λ,S)

c7Hu(τ ) P{X(0) > ub}

)
≤ −1

8

∑
i∈I

u2−2βi/νi w⊤A2,iw λβi
i

− 1

64

∑
i∈I\I′

w⊤A5,iw (λi − τi)
αi + c6

∑
i∈I′

Sαi
i + c6

∑
i∈J∪K

Sβi
i . (2.56)

Next, we want to lift conditions (2.55).

Lifting the condition λi − τi ≥ Ni Si. Assume that there is exactly one i ∈ I \ I ′ such that
λi−τi < Ni Si. The general case can be addressed in the same way. Define ∆ := (λi−τi−Si)/Ni,
and slice Pb in the i-th direction using this new scale:

Pb(τ ,λ,S) ≤
(τi+Si)/∆∑
j=τi/∆

(λi+Si)/∆∑
k=λi/∆

Pb(k, j,∆) ≤ S2
i ∆−2 Pb (j∗∆, k∗ ∆, ∆) , (2.57)

where j∗ = (τi + Si)/∆, k∗ = λi/∆, and

Pb(τ, λ,∆) = P



∃ ti ∈ u−2/νi [τ, τ + ∆],

∃ t′ ∈ u−2/ν′
[τ ′, τ ′ + S′] : X(t) > ub,

∃ si ∈ u−2/νi [λ, λ + ∆],

∃ s′ ∈ u−2/ν′
[λ′,λ′ + S′] : X(s) > ub


, x′ = (xj)j ̸=i.

Note that
k∗ ∆ − j∗∆ = λi − τi − Si = Ni∆,

which means that we can apply (2.56). Therefore,
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ln

(
Pb(τ ,λ,S)

c7Hu(τ ) P{X(0) > ub}
∏

i∈I\I′ S2
i ∆−2

)
≤ −1

8

∑
i∈I

u2−2βi/νi w⊤A2,iw λβi
i

− 1

64

∑
i∈I\I′

w⊤A5,iw (λi − τi − Si)
αi + c6

∑
i∈I′

Sαi
i + c6

∑
i∈J∪K

Sβi
i . (2.58)

which is now valid without the second condition of (2.55).

Lifting the condition λi ≥ Ni Si. Assume now that there is exactly one i ∈ I ′ such that
λi < Ni Si. Recall that for i ∈ I ′ holds λi = τi. Using the same approach, take ∆ := (λi∧1)/Ni.
Then,

Pb(τ ,λ,S) ≤
∑
k ̸=j

Pb(k∆, j∆,∆) +
∑
k=j

Pb(j∆, j∆,∆). (2.59)

where the sums are taken over{
(k, j) ∈ Z2

+ : λi/∆ ≤ k, j ≤ (λi + Si)/∆
}
.

Note that all the results up to this point were valid without any assumptions on S > 0. Now,
assuming that Si is large enough, we can use the bounds proven above to show that∑

|k−j|≥2

Pb(k∆, j∆,∆) ≤ c8
∑
k=j

Pb(j∆, j∆,∆).

It can also be shown that ∑
|k−j|=1

Pb(k∆, j∆,∆) ≤ c9
∑
k=j

Pb(j∆, j∆,∆).

It is therefore enough to bound the second sum of (2.59). We have

Pb(τ ,λ,S) ≤ c9 Si ∆−1 Pb(j∗∆, j∗∆,∆). (2.60)

Since j∗∆ = λi ≥ λi∧ 1 = Ni ∆, the bound (2.58) is applicable. The i-th term of the right-hand
side is

−w⊤A2,iw

8
u2−2βi/νi (j∗ ∆)βi + c6 ∆αi

i .

Note that j∗ = λi/∆, so the first term did not change, whereas the second is now bounded by a
constant: c6(λi ∧ 1)αi ≤ c6. We have thus shown that the following bound

ln

(
Pb(τ ,λ,S)

c10Hu(τ ) P{X(0) > ub}
∏

i∈I\I′ S2
i ∆−2

∏
i∈I Si ∆−1

)

≤ −1

8

∑
i∈I

u2−2βi/νi w⊤A2,iw λβi
i − 1

64

∑
i∈I\I′

w⊤A5,iw (λi − τi − Si)
αi + c6

∑
i∈J∪K

Sβi
i (2.61)

is valid without conditions (2.55). This concludes the proof.

2.5.3 Positivity of constant

Lemma 2.13. For all t ∈ Rn holds∫
Rd

e1
⊤x P {Yν,V(t) + Z(t) − dν,W(t) > x} dx = exp

(
−
∑

i∈J∪K
|ti|νi1⊤Wi 1 + 1⊤RZ(t, t)1

)
.
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Proof. Set

Ỹν,V(t) =
∑

i∈I∪J
Yνi,Vi(ti), d̃ν,W(t) =

∑
i∈I∪J

Sνi,Vi(ti)1 +
∑

j∈J∪K
|tj |νiWi1 (2.62)

and note that
Yν,V(t) − dν,W(t) = Ỹν,V(t) − d̃ν,W(t).

The claim follows from∫
Rd

e1
⊤xP {Yν,V(t) + Z(t) − dν,W(t) > x} dx

= E

{∫
Rd

e1
⊤x1 {Yν,V(t) + Z(t) − dν,W(t) > x} dx

}
= exp

(
−1⊤d̃ν,W(t)

)
E
{

exp
(
1⊤Ỹν,V(t)

)}
E
{

exp
(
1⊤Z(t)

)}
= exp

(
−
∑

i∈J∪K
|ti|νi1⊤Wi 1

)
exp

(
−
∑

i∈I∪J
1⊤Sνi,Vi(ti)1

)

× exp

(
1

2

∑
i∈I∪J

1⊤Rνi,Vi(ti, ti)1

)
exp

(
1⊤RZ(t, t)1

)
along with Rα,V (t, t) = 2Sα,V (t).

Lemma 2.14. For all t, s ∈ Rn holds∫
Rd

e1
⊤x P

{
Yν,V(t) + Z(t) − dν,W(t) > x

Yν,V(s) + Z(s) − dν,W(s) > x

}
dx

≤ exp

(
−1

2

∑
i∈J∪K

[
|ti|νi + |si|νi

]
1⊤Wi 1

)
exp

(
−1

4

∑
i∈I∪J

1⊤Sνi,Vi(ti − si)1

)

× exp

(
1

2
1⊤RZ(t, t) + RZ(t, s) + RZ(s, t) + RZ(s, s)1

)
.

Proof. Set Ỹν,V and d̃ν,W as in (2.62). By

P

{
Yν,V(t) + Z(t) − dν,W(t) > x

Yν,V(s) + Z(s) − dν,W(s) > x

}
≤ P

{
Yν,V(t) − dν,W(t) + Z(t)

+ Yν,V(s) − dν,W(s) + Z(s) > 2x

}
,

we have∫
Rd

e1
⊤x P

{
Yν,V(t) + Z(t) − dν,W(t) > x

Yν,V(s) + Z(s) − dν,W(s) > x

}
dx ≤ exp

(
−1

2
1⊤
[
d̃ν,W(t) + d̃ν,W(s)

])

× E

{
exp

(
1

2
1⊤
[
Ỹν,V(t) + Ỹν,V(s)

])}
E

{
exp

(
1

2
1⊤ (Z(t) + Z(s)) N

)}
.

First, compute the last expectation:

E

{
exp

(
1

2
1⊤ (Z(t) + Z(s))

)}
= exp

(
1

2
1⊤
[
RZ(t, t) + RZ(t, s) + RZ(s, t) + RZ(s, s)

]
1

)
.
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Since

E

{
exp

(
1

2
1⊤
[
Ỹν,V(t) + Ỹν,V(s)

])}

= exp

(
1

8
1⊤E

{[
Ỹν,V(t) + Ỹν,V(s)

][
Ỹν,V(t) + Ỹν,V(s)

]⊤}
1

)

= exp

(
1

8

∑
i∈I∪J

1⊤
[
Rνi,Vi(ti, ti) + Rνi,Vi(ti, si) + Rνi,Vi(si, ti) + Rνi,Vi(si, si)

]
1

)

= exp

(
1

4

∑
i∈I∪J

1⊤
[
Sνi,Vi(ti) + Rνi,Vi(ti, si) + Sνi,Vi(si)

]
1

)

and

1⊤
[
d̃ν,W(t) + d̃ν,W(s)

]
=
∑

i∈I∪J
1⊤
[
Sνi,Vi(ti) + Sνi,Vi(si)

]
1 +

∑
i∈J∪K

[
|ti|νi + |ti|νi

]
1⊤Wi 1,

we have

exp

(
−1

2
1⊤
[
d̃ν,W(t) + d̃ν,W(s)

])
E

{
exp

(
1

2
1⊤
[
Ỹν,V(t) + Ỹν,V(s)

])}

= exp

(
−1

2

∑
i∈J∪K

[
|ti|νi + |si|νi

]
1⊤Wi1

)

× exp

(
−1

4

∑
i∈I∪J

1⊤
[
Sνi,Vi(ti) + Sνi,Vi(si) −Rνi,Vi(ti, si)

]
1

)

and the claim follows by Sα,V (t) + Sα,V (s) −Rα,V (t, s) = Sα,V (t− s).

Lemma 2.15 (Lower bound for the constant). For SJ∪K/2 < δJ∪K < SJ∪K and all δI > 0,
holds

Hν,V,W ([0,S])
∏
i∈I

1

Si
≥
∏
i∈I

1

δi

1 −
∑
I0⊊I

∏
i∈I\I0

Ai

δi

 (2.63)

with

Ai = 2

(
4

1⊤Vi1

)1/νi

Γ

(
1

νi
+ 1

)
if 1⊤Vi 1 > 0 for all i ∈ I.

Proof. For any δ > 0 we have

Hν,V,W ([0,S]) ≥
∫

Rd

e1
⊤x P

{
∃ t ∈ [0,S] ∩ δZn

+ : Yν,V(t) + Z(t) − dν,W(t) > x
}
dx

≥
∑

k≤Nδ

∫
Rd

e1
⊤x P {Yν,V(δk) + Z(δk) − dν,W(δk) > x} dx

−
∑

k, l≤Nδ ,

k ̸= l

∫
Rd

e1
⊤x P

{
Yν,V(δk) + Z(δk) − dν,W(δk) > x

Yν,V(δl) + Z(δl) − dν,W(δl) > x

}
dx,
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where Nδ = ⌊S/δ⌋. Take SJ∪K/2 < δJ∪K < SJ∪K. Then Nδ,J∪K = 1J∪K, and there-
fore kI∪K = 0J∪K. It follows by definition of Z that Z(δk) = 0. Apply Lemma 2.13 and
Lemma 2.14.

Hν,V,W ([0,S]) ≥
∑

kI≤Nδ,I

1 −
∑

kI , lI ≤Nδ,I ,

kI ̸= lI

exp

(
−1

4

∑
i∈I

1⊤Sνi,Vi(δiki − δili)1

)

=
∏
i∈I

Si

δi
− Σ2(δ).

(2.64)

To bound the double sum, use Sα,V = |t|α
(
V 1t≥0 + V ⊤1t<0

)
reindex the sum as follows: let

I0(k) denote those indices, in which ki = li. This set cannot be equal to the entire I, becasuse in
this case kI = lI and such pairs are excluded from the sum, but it is empty if mini∈I |ki−li| ≥ 1.

Σ2(δ) =
∑
I0⊊I

∏
i∈I\I0

Nδ,i∑
k=1

Nδ,i∑
l=k+1

2 exp

(
−1

4

∑
i∈I

δνii |ki − li|νi1⊤Vi1

) ∏
i∈I0

Nδ,i∑
k=1

1

≤
∑
I0⊊I

∏
i∈I\I0

2Si

δ2i

(
4

1⊤Vi1

)1/νi ∫ ∞

0
e−xνi dx

∏
i∈I0

Nδ,i∑
k=1

1

=
∑
I0⊊I

∏
i∈I\I0

2Si

δ2i

(
4

1⊤Vi1

)1/νi

Γ

(
1

νi
+ 1

) ∏
i∈I0

Si

δi

=
∏
j∈I

Si

∑
I0⊊I

∏
i∈I\I0

2

δ2i

(
4

1⊤Vi1

)1/νi

Γ

(
1

νi
+ 1

) ∏
i∈I0

1

δi

Combining the above together, we obtain

Hν,V,W ([0,S])
∏
i∈I

1

Si
≥
∏
i∈I

1

δi
−
∑
I0⊊I

∏
i∈I\I0

Ai

δ2i

∏
i∈I0

1

δi
, (2.65)

where

Ai = 2

(
4

1⊤Vi1

)1/νi

Γ

(
1

νi
+ 1

)
.

This concludes the proof.

2.5.4 Proof of Theorem 2.1

Proof. By Lemma 2.18, the generalized variance satisfies

σ−2
b (τ ) − σ−2

b (0) =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
,

with Ξ defined in (2.81). By (2.82) and A2.4, there exists a constant c > 0 such that

σ−2
b (τ ) − σ−2

b (0) ≥ c
n∑

i=1

τβi
i ,

and therefore we obtain

P {∃ t ∈ [0,T ] : X(t) > ub} ∼ P {∃ t ∈ [0, δu] : X(t) > ub}

with δu = u−2/β ln2/β u by using the Piterbarg inequality (2.25).
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Upper bound

Take Λ > 0 and use the log-layer bound (Lemma 2.11) to obtain

P {∃ t ∈ [0, δu] : X(t) > ub} ≤ P
{
∃ t ∈ [0, u−2/βΛ] : X(t) > ub

}
+ C P {X(0) > ub} exp

(
−1

8

n∑
i=1

ξi Λβi
i

)
. (2.66)

In order to bound the first term from above, let us split the cube u−2/β[0,Λ] into parts of “size”
u−2/ν [0,S] with S > 0 such that SIc = ΛIc , and note that

P
{
∃ t ∈ u−2/ν [0,Λ] : X(t) > ub

}
≤
∑

k≤Nu

P
{
∃ t ∈ u−2/νS[k,k + 1] : X(t) > ub

}
=: Σ1(u,Λ,S),

(2.67)

where Nu =
⌈
u2/ν−2/βΛ/S

⌉
. By Lemma 2.21 and the uniform local Pickands Lemma 2.9, we

have

P
{
∃ t ∈ u−2/νS [k,k + 1] : X(t) > ub

}
∼ Hν,Vw,Ww ([0,S]) P {Xu,k(0) > ub}

∼ Hν,Vw,Ww ([0,S]) P {X(0) > ub} exp

(
−u2

2
b⊤
[
Σ−1
u,k − Σ−1

]
b

)
,

and therefore by (2.79)

P
{
∃ t ∈ u−2/νS [k,k + 1] : X(t) > ub

}
∼ Hν,Vw,Ww ([0,S]) P {X(0) > ub}

× exp

−1

2

∑
i,j∈I

Ξi,j

(
Si ki u

−ζi
)βi/2 (

Sj kj u
−ζj
)βj/2


with Ξ defined in (2.81) and ζ = 2/β − 2/ν. Using the following formula

∑
k≤Nu

exp

−1

2

∑
i,j∈I

Ξi,j

(
Si ki u

−ζi
)βi/2 (

Sj kj u
−ζj
)βj/2

 ∼
∏
i∈I

uζi

Si
G(β,Ξ,Λ),

where

G(β,Ξ,Λ) :=

∫ ΛI

0I

exp

−1

2

∑
i,j∈I

Ξi,j t
βi/2
i t

βj

j

 dt, G(β,Ξ) := lim
Λ→∞

G(β,Ξ) < ∞,

which may be proven by Riemann sum argument, we obtain the following estimate for the single
sum:

Σ1(u,Λ,S)

P {X(0) > ub}
∼ Hν,Vw,Vw ([0,S])

∏
i∈I

uζi

Si
G(β,Ξ,Λ).
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Let us prove that the following limit

Hν,Vw,Ww = lim
ΛIc→∞

lim
SI→∞

Hν,Vw,Ww ([0,S])
∏
i∈I

1

Si
, (2.68)

exists and is finite. Since S 7→ Hν,Vw,Ww ([0,S]) is subadditive in each Si, the limit

lim
SI→∞

Hν,Vw,Ww ([0,S])
∏
i∈I

1

Si

exists and is an increasing function of each Si > 0, i ∈ Ic. To prove that the limit (2.68) exists
and is finite, it would suffice to show that Hν,Vw,Ww ([0,S]) /

∏
i∈I Si is uniformly bounded in

SIc . To this end, fix Λ0 < Λ and note that for every S and S0 such that SIc = ΛIc and
S0,Ic = Λ0,I , holds

Σ′
1(u,Λ,S) ≤ P

{
∃ t ∈ u−2/ν [0,Λ] : X(t) > ub

}
≤ P

{
∃ t ∈ u−2/ν [0,Λ0] : X(t) > ub

}
+ P

{
∃ t ∈ u−2/ν [Λ0,Λ] : X(t) > ub

}
≤ Σ1(u,Λ0,S0) + C P {X(0) > ub} exp

(
−1

8

n∑
i=1

ξi Λβi
0,i

)
,

where Σ′
1(u,Λ,S) is the same single sum (2.67), but with Nu − 1 instead of Nu in the limit of

summation. It is easy to see that a computation analogous to what we did above for Σ1(u,Λ,S)
gives the same estimate for Σ′

1(u,Λ,S):

Σ′
1(u,Λ,S)

P {X(0) > ub}
∼ Hν,Vw,Ww ([0,S])

∏
i∈I

uζi

Si
G(β,Ξ). (2.69)

Hence,

Hν,Vw,Ww ([0,S])
∏
i∈I

1

Si
G(β,Ξ,Λ) = lim

u→∞

Σ′
1(u,Λ,S)

P {X(0) > ub}
∏

i∈I u
ζi

≤ lim
u→∞

Σ1(u,Λ0,S0)

P {X(0) > ub}
∏

i∈I u
ζi

+ C exp

(
−1

8

n∑
i=1

ξi Λβi
i

)
1I=∅

≤ Hν,Vw,Ww ([0,S0])
∏
i∈I

1

S0,i
G(β,Ξ,Λ0) + C exp

(
−1

8

n∑
i=1

ξi Λβi
0,i

)
1I=∅ =: c,

Since for Λi > 1 holds G(β,Ξ,Λ) > G(β,Ξ,1) = c1 > 0, we have the uniform bound

Hν,Vw,Ww ([0,S])
∏
i∈I

1

Si
≤ c

c1
,

and thus the claim is proved. Using (2.66), letting S → ∞ and then Λ → ∞, we obtain

lim sup
u→∞

P
{
∃ t ∈ u−2/β[0,Λ] : X(t) > ub

}
P {X(0) > ub}

∏
i∈I u

ζi
≤ Hν,Vw,Ww G(β,Ξ).
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Lower bound

By Bonferroni inequality,

P
{
∃ t ∈ u−2/ν [0,Λ] : X(t) > ub

}
≥ Σ′

1(u,Λ,S) − Σ2(u,Λ,S), (2.70)

where Σ′
1(u,Λ,S) is the same single sum (2.67), but with Nu − 1 instead of Nu in the limit of

summation, and
Σ2(u,Λ,S) =

∑
k ̸= l≤Nu

Pb(Sk,Sl,S)

and it only remains to bound Σ2(u,Λ,S). Note that if k ≤ Nu, then in particular kIc = 0.

First, rewrite it as Σ2 = Σ2,1 + Σ2,2, where the double sums Σ2,1 and Σ2,2 are taken over{
kI ̸= lI ≤Nu,I ,

mini∈I |ki−li|≤1

kIc=lIc=0

}
and

{
kI ̸= lI ≤Nu,I ,

mini∈I |ki−li|>1

kIc=lIc=0

}

correspondingly. Each term of the sum Σ2,2(u,Λ,S) satisfies conditions of Lemma 2.12, and
therefore

Σ2,2(u,Λ,S)

Hu(Sk) P {X(0) > ub}

≤ C ec
∑

j∈Ic Λ
βj
j

∑
kI≤Nu,I

∑
kI +1I ≤ lI ≤Nu,I

∏
i∈I

(li − ki − 1)2 exp
(
−κi

64
Sαi
i (li − ki − 1)αi

)

≤ Cec
∑

j∈Ic Λ
βj
j

∏
i∈I

∞∑
l=1

l2 exp
(
− κ

64
Sαi
i lαi

)
.

It remains to note that

Nu,j∑
k=0

exp

(
− ξi

4
S
βj

j kβju−βjζj

)
∼ 41/βiuζi

Si ξ
1/βi

i

∫ Λi

0
e−xβi dx, (2.71)

which together with (2.69) gives

Σ2,2(u,Λ,S)

Σ′
1(u,Λ,S)

≤ C ec
∑

j∈Ic Λ
βj
j

Hν,Vw,Ww ([0,S])

∏
i∈I

exp
(
−κi

64
Sαi
i

)
and therefore

lim
ΛIc→∞

lim
SI→∞

lim sup
u→∞

Σ2,2(u,Λ,S)

Σ′
1(u,Λ,S)

= 0.

Next, we bound the sum Σ2,1 over adjacent events, that is, those with mini∈I |ki − li| ≤ 1. To
this end, introduce the following reindexing of the sum: for a given pair (k, l), indexing Σ2,1,
let I0(k, l) denote those indices, in which lI0 = kI0 . This set may be empty, but it cannot be
equal to I, since in this case lI would be equal to kI . Let also I1(k, l) denote those indices, in
which lI1 = kI1 + 1. This set may be equal to I, but it cannot be empty, since these terms are
already included in Σ2,2(u,Λ,S). Finally, denote and I2 = I \ (I0 ∪ I1). We have

Σ2,1(u,Λ,S) =
∑
I0⊊I

∑
∅ ̸=I1⊂I

∑
kI0=lI0≤Nu,I0

∑
lI1=kI1+1,

kI1≤Nu,I1

∑
kI2 ̸=lI2≤Nu,I2 ,

mini∈I2 |ki−li|>1

2Pb(Sk,Sl,S).
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Let us split [0,S] along axes from I1 into 2|I1| subintervals

[0,S] = S
[
1I1S

−1/2,1
]
∪

2|I1|−1⋃
j=0

Cj , 1I1,i =

{
1, i ∈ I1,
0, i ̸∈ I1,

and use it to obtain the following bound:

Pb(Sk,Sl,S) ≤ A(k, l) +

2|I1|−1∑
j=0

P {∃ t ∈ Cj : X(t) > ub} =: Σ′
2,1(u,Λ,S) + Σ′′

2,1(u,Λ,S).

(2.72)
where

A(k, l) = P



∃ t ∈ u−2/νS [k,k + 1] : X(t) > ub

∃ sI0 ∈ u−2/νI0SI0 [kI0 ,kI0 + 1I0 ] ,

∃ sI1 : u−2/νI1SI1

[
S

−1/2
I1 + kI1 + 1,kI1 + 2I1

]
,

∃ sI2 ∈ u−2/νI2SI2 [lI2 , lI2 + 1I2 ] : X(s) > ub


In order to apply Lemma 2.12, we lengthen the I1 interval interval in the definition of A(k, l)

by S
1/2
I′ so that it fell under the definition of double event probabilty (2.45), and therefore

A(k, l)

P {X(0) > ub}
≤ Pb(Sk,Sk1I0∪I1 + S1/21I1 + 1I1 + Sl1I2 ,S)

P {X(0) > ub}

≤ C
∏
ic∈Ic

Ac,ic

∏
i0∈I0

A0,i0

∏
i1∈I1

A1,i1

∏
i2∈I2

A2,i2 ,

where Ac,i = exp (cΛαi
i ), A0,i = Si

A1,i = Si exp

(
−ξi(w)

32
S
αi/2
i − τi(w)

4
Sβi
i kβi

i u2−2βi/νi

)
,

A2,i = (li − ki − 1)−2 exp

(
−ξi(w)

32
(li − ki − 1)αi − τi(w)

4
Sβi
i kβi

i u2−2βi/νi

)
.

Summing up Σ′
2,1(u,Λ,S) in k and l, we obtain

Σ′
2,1(u,Λ,S)

P {X(0) > ub}
≤ C

∏
ic∈Ic

Ac,ic

∑
I0⊊I

∑
∅ ̸= I1⊂I

∏
i0∈I0

A0,i0

∏
i1∈I1

A1,i1

∏
i2∈I2

A2,i2 ,

where Ac,i = Ac,i = exp (cΛαi
i ), A0,i = Siu

ζiΛi/Si = uζiΛi and

A1,i =
uζi

Si

(
4

τi(w)

)1/βi

Γ

(
1

βi
+ 1

)
Si exp

(
−ξi(w)

32
S
αi/2
i

)
,

A2,i =
uζi

Si

(
4

τi(w)

)1/βi

Γ

(
1

βi
+ 1

)
exp

(
−ξi(w)

32
Sαi
i

)
.

Therefore, by (2.69), (2.71) and Lemma 2.15 to bound 1/Hν,Vw,Ww from above by C/
∏

i∈I Si,
we obtain
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Σ′
2,1(u,Λ,S)

Σ′
1(u,Λ,S)

≤ C
∏
ic∈Ic

exp
(
cΛ

αic
ic

)
×

×
∑
I0⊊I

∑
∅ ̸= I1⊂I

∏
i0∈I0

Λi0

Si

∏
i1∈I1

exp

(
−ξi1(w)

32
S
αi1

/2

i

) ∏
i2∈I2

1

Si
exp

(
−ξi2(w)

32
S
αi2
i2

)

and

lim
ΛIc→∞

lim
SI→∞

lim sup
u→∞

Σ′
2,1(u,Λ,S)

Σ′
1(u,Λ,S)

= 0.

Finally, let us find a bound for the second term of (2.72). By local Pickands lemma

P {∃ t ∈ Cj : X(t) > ub} ∼ Hν,Vw,Ww

([
0,1I1S

1/2 + 1I\I1S
])

P {X(0) > ub}

and therefore, using Nu,i =
⌈
Λiu

ζi/Si

⌉
, obtain

Σ′′
2,1(u,Λ,S) :=

∑
k≤Nu

∑
∅ ̸= I1⊂I

2|I1|−1∑
j=0

P {∃ t ∈ Cj : X(t) > ub}

∼ P {X(0) > ub}
∏
i∈I

Λiu
ζi

Si

∑
∅ ̸= I1⊂I

2|I1|Hν,Vw,Ww

([
0,1I1S

1/2 + 1I\I1S
])

and

Σ′′
2,1(u,Λ,S)

Σ′
1(u,Λ,S)

≤

[∏
i∈I

Λi

] ∑
∅ ̸= I1⊂I

2|I1|Hν,Vw,Ww

([
0,1I1S

1/2 + 1I\I1S
])∏

j∈I

1

Si
.

By subadditivity of the generalized Pickands-Piterbarg constant,

lim
S→∞

Hν,Vw,Ww

(
[0,1I′S1/2 + 1I\I′S]

)∏
j∈I

1

Si
≤ lim

S→∞
Hν,Vw,Ww ([0,1])

∏
j∈I1

S
−1/2
j = 0,

and therefore

lim
ΛIc→∞

lim
SI→∞

lim
u→∞

Σ′′
2,1(u,Λ,S)

Σ′
1(u,Λ,S)

= 0.

2.6 Appendix

2.6.1 Covariance lemma

Lemma 2.16. Let D = (Di,j)i,j∈F be a block matrix, each block of which is a d × d matrix.
Then the following are equivalent:

1. D ≽ 0.

2. There exists a family (Ci,k)i,k∈F of d× d matrices such that

Di,j =
∑
k∈F

Ci,k C
⊤
k,j .
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3. A matrix-valued function R defined by

R(t, s) =
∑
i,j∈F

Di,j ti sj , t, s ∈ Rn

is a covariance function of some Rd-Gaussian random field.

If either of statements hold, then R is the covariance function of

Z(t) :=
∑
k∈F

Ck(t)N k, Ck(t) :=
∑
i∈F

Ci,k ti,

where N k ∼ N(0, I) are independent standard Gaussian vectors.

Proof of Lemma 2.16. Let n = |F|. If D ≽ 0, then there exists a (nd) × (nd) matrix C such
that D = CC⊤. By viewing C as a block matrix with the same block structure as D, we find
that

Di,j =
∑
k∈F

Ci,k C
⊤
k,j .

Hence,

R(t, s) =
∑
i,j∈F

∑
k∈F

Ci,k C
⊤
k,j ti sj =

∑
k∈F

(∑
i∈F

Ci,k ti

)∑
j∈F

Cj,k sj

⊤

,

which clearly is positive definite.

If, on the other hand, R is positive definite, then for all collections {(ti, zi) ∈ Rn × RF , i =
1, . . . , p} holds

0 ≤
p∑

k,l=1

z⊤
k R(tk, tl) zl =

p∑
k,l=1

∑
i,j∈F

z⊤
k Di,j zl tk,i sl,j =

∑
i,j∈F

y⊤
i Di,j yj = y⊤D y,

where

yi =

p∑
k=1

zk tk,i, y = (yi)i∈F .

Since zk and tk are arbitrary, y is also arbitrary. Hence, D ≽ 0, and the chain of implications
has come full circle.

2.6.2 Supplementary lemma on the quadratic optimization problem

Proof of Lemma 2.7. For j ∈ {1, . . . , d} define

fj(t) = b̃(t) Σ−1(t) ej , gj(t) = b̃j(t) − bj .

By continuity of Σ−1(t) and the fact that Σ 7→ b̃ is Lipschitz continuous, these functions are
continuous and we have

I(t) = max {V |V = {i ∈ {1, . . . , d} : gi(t) = 0, fi(t) > 0}} ,
K(t) = max {V |V = {j ∈ {1, . . . , d} : gj(t) = 0, fj(t) = 0}} ,
L(t) = max {V |V = {l ∈ {1, . . . , d} : gl(t) > 0, fl(t) = 0}} ,
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where the maximum is in the power set of {1, . . . , d} ordered by inclusion. It follows from the
quadratic optimization lemma that these three sets are disjoint and the equality I(t) ∪K(t) ∪
L(t) = {1, . . . , d} holds for each t ∈ E.

For U, V ⊂ {1, . . . , d} define

AU :=
⋂
j∈V

f−1
j (0) ∩

⋂
j∈V c

(
f−1
j (0)

)c
, BV :=

⋂
j∈V

g−1
j (0) ∩

⋂
j∈V c

(
g−1
j (0)

)c
, CU,V = AU ∩BV .

One can check the following properties of these sets:

1. V ̸= U ⇐⇒ AV ∩ AU = ∅ ⇐⇒ BV ∩ BU = ∅ and hence (U, V ) ̸= (U ′, V ′) ⇐⇒
CU,V ̸= CU ′,V ′ .

2. (AV )V ∈2d , (BV )V ∈2d and (CU,V )U, V ∈2d are finite covers of E.

3. AV , BV and CU,V are locally closed sets (that is, intersections of an open and a closed
set).

4. I(t) = U c on AU .

5. L(t) = V c on BV .

6. K(t) = U ∩ V on CU,V .

In other words, we have

I(t) =
∑
U∈2d

U c 1AU
(t), L(t) =

∑
V ∈2d

V c 1BV
(t), K(t) =

∑
U, V ∈2d

U ∩ V 1CU,V
(t).

Note that some of AV ’s, BV ’s or CU,V ’s may be empty.

Let us split 2d in two parts 2d = V1(t) ∪ V2(t) in the following way:

1. if V ∈ V1(t), then for all ε > 0 holds AV ∩Bε(t) ̸= ∅,

2. if V ∈ V2(t), then there exists ε0 = ε0(V, t) > 0 such that AV ∩Bε0(t) = ∅.

Define
ε(t) := min

V ∈V2(t)
ε0(V, t).

If s ∈ Bε(t) with ε < ε(t) there exists V ∈ V1(t) such that s ∈ AV and therefore I(s) = V c.
Since j ∈ Ic(t) = K(t) ∪ L(t) = V if and only if fj(s) = 0, using continuity of fj and letting
ε → 0 we obtain that fj(t) = 0 and therefore K(s) ∪ L(s) = V ⊂ K(t) ∪ L(t). The latter is
equivalent to I(t) ⊂ I(s).

Now we proceed to the last claim of the lemma. Similarly to what we did above, split again 2d

in two parts 2d = V′
1(t) ∪ V′

2(t), where

1. V ∈ V′
1(t) if for all ε > 0 holds BV ∩Bε(t) ̸= ∅,

2. V ∈ V′
2(t) if there exists ε′0 = ε′0(V, t) > 0 such that BV ∩Bε0(t) = ∅.

Define
ε′(t) = min

V ∈V′
2(t)

ε′0(V, t).
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Then, if s ∈ Bε(t) with ε < ε′(t), there exists V ∈ V′
1(t) such that s ∈ BV and therefore

L(s) = V c. Since j ∈ Lc(s) = I(s) ∪K(s) = V is equivalent to gj(s) = 0, letting ε → 0 and
using continuity of gj we obtain that gj(t) = 0. Hence, I(s) ∪ K(s) = V ⊂ I(t) ∪ K(t). The
latter is equivalent to L(t) ⊂ L(s).

From these two properties follows that if s ∈ Bε(t) with ε < min{ε(t), ε′(t)}, then K(s) ⊂
K(t).

2.6.3 Expansions

In this section, we develop some asymptotic expansions, first without assuming A2.6.

Inverse of Sigma

Lemma 2.17. The inverse of the variance matrix Σ(t) = R(t, t) admits the following asymptotic
formula

Σ−1(t) − Σ−1 ∼ Σ−1

 n∑
i=1

[
B1,i t

β′
i

i + B2,i t
βi
i

]
+

n∑
i,j∈F

D̃i,j t
βi/2
i t

βj/2
j

Σ−1, (2.73)

where
Bk,i = Ak,i + A⊤

k,i, k = 1, 2 and D̃i,j = A6,i,j + B1,iΣ
−1B1,j , (2.74)

and the error is of order

o

(
n∑

i=1

tβi
i

)
.

Proof of Lemma 2.17. Plugging t = s into (2.8), we obtain

Σ − Σ(t) =
n∑

i=1

[
B1,i t

β′
i

i + B2,i t
βi
i

]
+
∑

i, j ∈F
A6,i,j t

βi/2
i t

βj/2
j + o

(
n∑

i=1

tβi
i

)
(2.75)

with Bk,i, k = 1, 2 defined in (2.74). To find its expansion up to the second order, use the
Neumann power series

Σ−1(t) =
[
Σ −

[
Σ − Σ(t)

]]−1
=
[
I − Σ−1

[
Σ − Σ(t)

]]−1
Σ−1 =

∑
k≥0

(
Σ−1

[
Σ − Σ(t)

])k
Σ−1.

Note that ∑
k≥3

(
Σ−1[Σ − Σ(t)]

)k
Σ−1 = o

(
n∑

i=1

tβi
i

)

and the first three terms give

Σ−1(t) ∼ Σ−1 + Σ−1
[
Σ − Σ(t)

]
Σ−1 + Σ−1

[
Σ − Σ(t)

]
Σ−1

[
Σ − Σ(t)

]
Σ−1.

Plugging (2.75) into the latter, we obtain the desired result.
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Exponential prefactor

On several occasions we shall need a formula for the following quantity, which we shall refer to
as the exponential prefactor :

ln

(
φΣ(τ )

(
ub− u−1x

)
φΣ(u b)

)
= −1

2

(
ub− u−1x

)⊤
Σ−1(τ )

(
ub− u−1x

)
+

1

2
u2 b⊤Σ−1b

= −1

2
u2 b⊤

[
Σ−1(τ ) − Σ−1

]
b + b⊤Σ−1(τ )x− 1

2u2
x⊤Σ−1(τ )x

(2.76)

≤ −1

2
u2 b⊤

[
Σ−1(τ ) − Σ−1

]
b + b⊤Σ−1(τ )x. (2.77)

Using (2.73) and observing that

b⊤Σ−1B1,iΣ
−1b = w⊤B1,iw = w⊤(A1,i + A⊤

1,i)w = w⊤ A1,iw

=0

+w⊤A1,i

=0

w = 0, (2.78)

we obtain

b⊤
[
Σ−1(τ ) − Σ−1

]
b =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
, (2.79)

where
Ξi,j = w⊤

[
B2,i 1i=j + D̃i,j 1i,j∈F

]
w. (2.80)

Note that

Ξi,j = w⊤
[
2A2,i 1i=j + Di,j 1i,j∈F

]
w, Di,j = A6,i,j + A1,iΣ

−1A⊤
1,j , (2.81)

because A1w = 0 and w⊤B2,iw = w⊤(A2,i + A⊤
2,i)w = 2w⊤A2,iw.

Assuming A2.6, we find that∑
i,j∈F

w⊤Di,j w τ
βi/2
i τ

βj/2
j = ŵ⊤D ŵ ≥ 0,

where ŵ = (w τ
βi/2
i )i∈F ∈ RF . Therefore,

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j = 2

n∑
i=1

w⊤A2,iw τβi
i +

∑
i,i∈F

w⊤Di,j w τ
βi/2
i τ

βj/2
j

≥ 0

≥ 2
n∑

i=1

w⊤A2,iw τβi
i .

(2.82)

Generalized variance expansion

Lemma 2.18. The generalized variance

σ−2
b (τ ) = min

x≥b
x⊤ Σ−1(τ )x

admits the following asymptotic formula:

σ−2
b (τ ) − σ−2

b (0) =

n∑
i,j=1

Ξi,j τ
βi/2
i τ

βj/2
j + o

(
n∑

i=1

τβi
i

)
, (2.83)

where Ξ is defined by (2.80) or (2.81).
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Proof of Lemma 2.18. We remind the reader of our notation convention AI = AII = (Aij)i, j∈I
for a given d× d matrix A and I ⊂ {1, . . . , d}.

Define a vector-valued function b(τ ) by

σ−2
b (τ ) = min

x≥b
x⊤ Σ−1(τ )x =: b⊤(τ ) Σ−1(τ ) b(τ ).

We have
σ−2
b (τ ) − σ−2

b (0) = b⊤(τ ) Σ−1(τ ) b(τ ) − b⊤(0) Σ−1(0) b(0). (2.84)

Adding and subtracting b(0) and using Lemma 2.5, we obtain

b⊤(τ ) Σ−1(τ ) b(τ ) = b⊤(τ ) Σ−1(τ ) b(0) + b(τ ) Σ(τ )
[
b(τ ) − b(0)

]
= b⊤(τ ) Σ−1(τ ) b(0) + b⊤I(τ )(τ ) Σ−1

I(τ )(τ )
[
b(τ ) − b(0)

]
I(τ )

.

Take ε(0) > 0 as in Lemma 2.7 and let |τ | < ε(0). Then, we have that I(τ ) ⊂ I(0), and
therefore bI(τ )(τ ) = bI(τ ) = bI(τ )(0), hence the last term on the right is zero. Similarly, adding
and subtracting b(τ ) in the second term of (2.84) and applying Lemma 2.5, we obtain

b⊤(0) Σ−1(0) b(0) = b⊤(τ ) Σ−1(0) b(0) +
[
b(0) − b(τ )

]⊤
I(0)

Σ−1
I(0)(0) bI(0)(0).

The last term is zero, since I(0) ⊂ I(t) ∪ K(t), and therefore bI(0)(0) = bI(0) = bI(0)(τ ).
Therefore,

σ−2
b (τ ) − σ−2

b (0) = b⊤(τ )
[
Σ−1(τ ) − Σ−1(0)

]
b(0). (2.85)

Note the small difference with the formula (2.79): here we have b(τ ) on the left instead of
b = b(0). This, however, does not matter within the given error, since by A2.3 and (2.73) the
difference [

b(τ ) − b(0)
]⊤[

Σ−1(τ ) − Σ−1
]
b(0) = o

 n∑
i,j=1

τ
β′
i

i τ
β′
j

j


is within the required error. By (2.78), we arrive at (2.83).

Conditional mean

Lemma 2.19. The conditional mean vector

d τ (t) =
[
I −R(τ + t, τ ) Σ−1(τ )

]
b

admits the following asymptotic formula

d τ (t) =
n∑

i=1

[
A2,i

[
(τi + ti)

βi − τβi
i

]
+ Sαi,A5,i(ti)

]
w

+
∑
i,j∈F

τ
βj/2
j

[
(τi + ti)

βi/2 − τ
βi/2
i

]
Di,j w + ϵ(τ , t), (2.86)

with Di,j = A6,i,j + A1,iΣ
−1A⊤

1,j and the error ϵ satisfying

ϵ(τ , t) = o

(
n∑

i=1

[
τβi
i + tβi

i + |ti|αi

])
.
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Proof of Lemma 2.19. Throughout this calculation, the equivalence relation f ∼ g is defined as
follows:

f ∼ g ⇐⇒ f − g = o

(
n∑

i=1

[
tβi
i + τβi

i + |ti|αi

])
.

In order to simplify the computation, define C and B by

R(t, s) =: Σ − C, Σ−1(τ ) =: Σ−1 + Σ−1B Σ−1.

With these shorthands, we have

I −R(τ + t, τ ) Σ−1(τ ) = I −
[
Σ − C

][
Σ−1 + Σ−1B Σ−1

]
= (C −B) Σ−1 + C Σ−1B Σ−1

Note that

C ∼
n∑

i=1

[
A1,i (τi + ti)

β′
i + A2,i (τi + ti)

βi + A⊤
1,i τ

β′
i

i + A⊤
2,i τ

βi
i + Sαi,A5,i(ti)

]
+
∑
i, j∈F

A6,i,j (τi + ti)
βi/2 τ

βj/2
j ,

B ∼
n∑

i=1

[
B1,i τ

β′
i

i + B2,i τ
βi
i

]
+
∑
i,j∈F

(A6,i,j + B1,iΣ
−1B1,j) τ

βi/2
i τ

βj/2
j ,

with Bk,i = Ak,i + A⊤
k,i, k = 1, 2. First term:

(C −B) Σ−1 ∼
n∑

i=1

[
A1,i

[
(τi + ti)

β′
i − τ

β′
i

i

]
+ A2,i

[
(τi + ti)

βi − τβi
i

]
+ Sαi,A5,i(ti)

]
Σ−1

−
∑
i,j∈F

B1,iΣ
−1B1,jΣ

−1 τ
βi/2
i τ

βj/2
j +

∑
i,j∈F

A6,i,jΣ
−1
[
(τi + ti)

βi/2 − τ
βi/2
i

]
τ
βj/2
j .

Second term:

C Σ−1B Σ−1 ∼
∑
i,j∈F

[
A1,iΣ

−1B1,j(τi + ti)
βi/2τ

βj/2
j + A⊤

1,iΣ
−1B1,jτ

βi/2
i τ

βj/2
j

]
Σ−1.

Adding the two formulae together, we observe a few cancellations:

I −R(τ + t, τ ) Σ−1(τ )

∼
n∑

i=1

[
A1,i

[
(τi + ti)

β′
i − τ

β′
i

i

]
+ A2,i

[
(τi + ti)

βi − τβi
i

]
+ Sαi,A5,i(ti)

]
Σ−1

+
∑
i,j∈F

τ
βj/2
j

[
(τi + ti)

βi/2 − τ
βi/2
i

][
A6,i,j + A1,iΣ

−1B1,j

]
Σ−1. (2.87)

Multiplying by b on the right and using A1,iw = 0 yields (2.86).
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Conditional covariance

Lemma 2.20. The conditional covariance function

Rτ (t, s) := R(τ + t, τ + s) −R(τ + t, τ ) Σ−1(τ )R(τ , τ + s)

admits the following asymptotic formula

Rτ (t, s) =
n∑

i=1

[
Sαi,A5,i(ti) + Sαi,A5,i(−si) − Sαi,A5,i(ti − si)

]
+
∑
i,j∈F

Di,j

(
(τi + ti)

βi/2 − τ
βi/2
i

)(
(τj + sj)

βj/2 − τ
βj/2
j

)
+ ϵ(τ , t, s) (2.88)

with Di,j = A6,i,j + A1,iΣ
−1A⊤

1,j and the error ϵ satisfying

ϵ(τ , t, s) = o

(
n∑

i=1

[
tβi
i + sβi

i + τβi
i + |ti|αi + |si|αi + |ti − si|αi

])
(2.89)

as (τ , t, s) → 0.

Proof of Lemma 2.20. Let us, for the sake of clarity, denote

R(t, s) =: Σ − C(t, s), Σ−1(τ ) =: Σ−1 + Σ−1B(τ ) Σ−1. (2.90)

Therefore, we have

R(τ , t, s) = Σ − C(τ + t, τ + s)

−
[
Σ − C(τ + t, τ )

][
Σ−1 + Σ−1B(τ ) Σ−1

][
Σ − C(τ , τ + s)

]
= −C(τ + t, τ + s) + C(τ + t, τ ) + C(τ , τ + s) −B(τ ) + F + ϵ,

where

F := B(τ ) Σ−1C(τ , τ + s) + C(τ + t, τ ) Σ−1B(τ ) − C(τ + t, τ ) Σ−1C(τ , τ + s)

and
ϵ := −C(τ + t, τ ) Σ−1B(τ ) Σ−1C(τ , τ + s)

= O

(
n∑

i=1

[
τ
3β′

i
i + t

3β′
i

i + s
3β′

k
i + |ti|3αi + |si|3αi

]) (2.91)

can be subsumed into (2.89). Let us substitute C and B with their expressions

C(t, s) ∼
n∑

i=1

[
A1,i t

β′
i

i + A2,i t
βi
i + A⊤

1,i s
β′
i

i + A⊤
2,i s

βi
i + Sαi,A5,i(ti − si)

]
+
∑
i,j∈F

A6,i,j t
βi/2
i t

βj/2
j ,

B(τ ) ∼
n∑

i=1

[
B1,i τ

β′
i

i + B2,i τ
βi
i

]
+
∑
i,j∈F

[
A6,i,j + B1,iΣ

−1B1,j

]
τ
βi/2
i τ

βj/2
j .

(2.92)
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Let us first compute the coefficients in front of various powers of τ , τ + t and τ + s in

−C(τ + t, τ + s) + C(τ + t, τ ) + C(τ , τ + s) −B(τ ). (2.93)

Coefficients of the following terms are zero:

(τi + ti)
β′
i , (τi + ti)

βi , (τi + si)
β′
i , (τi + si)

βi , τ
β′
i

i , τβi
i .

Next, we proceed to the mixed terms:

(τi + ti)
βi/2 (τj + sj)

βj/2 : −A6,i,j , τ
βi/2
i (τj + sj)

βj/2 : A6,i,j ,

(τi + ti)
βi/2 τ

βj/2
j : A6,i,j , τ

βi/2
i τ

βj/2
j : −A6,i,j −B1,iΣ

−1B1,j

Let us compare these with the corresponding orders in

F = B(τ ) Σ−1C(τ , τ + s) + C(τ + t, τ ) Σ−1B(τ ) − C(τ + t, τ ) Σ−1C(τ , τ + s).

We have:

(τi + ti)
βi/2 (τj + sj)

βj/2 : −A1,iΣ
−1A⊤

1,j ,

τβi/2 (τj + sj)
βj/2 : A1,iΣ

−1A⊤
1,j ,

(τi + ti)
βi/2 τ

βj/2
j : A1,iΣ

−1A⊤
1,j ,

τ
βi/2
i τ

βj/2
j : B1,iΣ

−1A1,j + A⊤
1,iΣ

−1A⊤
1,j .

Combining these, we find that the aggregate contribution of these terms to R is∑
i,j∈F

[
A6,i,j + A1,iΣ

−1A⊤
1,j

] (
(τi + ti)

βi/2 − τ
βi/2
i

)(
(τj + sj)

βj/2 − τ
βj/2
j

)
. (2.94)

The significant S-terms appear only from (2.93). Their combined contribution is

n∑
i=1

[
Sαi,A5,i(ti) + Sαi,A5,i(−si) − Sαi,A5,i(ti − si)

]
. (2.95)

The accumulated error is of order

o

(
n∑

i=1

[
tβi
i + sβi

i + τβi
i + |ti|αi + |si|αi + |ti − si|αi

])
.

Limiting process

Lemma 2.21. Let Λ > 0, S > 0 and let

Qu =
{
τ ∈ Rn

+ : τi = 0 if i ∈ Ic and τi ≤ u2/αi−2/νiΛi/Si if i ∈ I
}
.

Then, the rescaled by u−2/ν contitional mean vector du,τ converges uniformly

lim
u→∞

sup
τ∈Qu

sup
t∈[0,S]

∣∣u2 du,τ (t) − d(t)
∣∣ = 0
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to the following limit

d(t) =
∑

i∈I∪J
Sαi,A5,i(ti)w +

∑
i∈J∪K

A2,iw tβi
i . (2.96)

The rescaled conditional covariance matrix Ru,τ converges uniformly

lim
u→∞

sup
τ∈Qu

sup
t, s∈[0,S]

∥∥u2Ru,τ (t, s) −R(t, s)
∥∥ = 0

to the following limit:

R(t, s) =
∑

i∈I∪J
Rαi,A5,i(ti, si) +

∑
i,j∈(J∪K)∩F

Di,j t
βi/2
i s

βj/2
j , (2.97)

where Rα,V is defined in (2.10) and Di,j in (2.81).

Assuming A2.6 and using Lemma 2.16 we find that the covariance (2.97) corresponds to the
following Gaussian random field:

Y (t) =
∑

i∈I∪J
Yαi,A5,i(ti) +

∑
k∈F

Ck(t)N k, Ck(t) =
∑
i∈F

Ci,k t
βi/2
i ,

where

1. Yαi,A5,i are operator fractional Brownian motions associated to Rαi,A5,i , independent of
each other,

2. N k are standard Gaussian vectors, independent of each other and of Yαi,A5,i ,

3. (Ci,k)i,k∈F , is a family of d × d matrices satisfying (2.9), whose existence is guaranteed
by A2.6 and Lemma 2.16.

2.6.4 Calculations from the log-layer lemma

Proof of (2.40). By the definition of χu,k as the condional process

χu,k(t) = u
(
Xu,k(t) −Xu,k(0)

∣∣∣ Xu,k(0) = ub− x

u

)
we have

E {χu,k(t)} = −u
[
I −Ru(Λk + t,Λk) Σ−1

u (Λk)
] (

u b− x

u

)
(2.98)

= −u2 du,Λk(t) +
[
I −Ru(Λk + t,Λk) Σ−1

u (Λk)
]
x. (2.99)

By 2.87, we have that for every ε > 0 exists δ > 0 such that if |τ |, |t| < δ, then∥∥I −R(τ + t, τ ) Σ−1(τ )
∥∥ ≤ ε

Setting τ ⇝ u−2/νΛk and t ⇝ u−2/νt, with k now belonging to Qu defined by (2.5.1), and
noting that both belong to a shrinking, as u → ∞, vicinity of zero, we obtain the following
result: for every ε > 0 there exists u0 such that for all u ≥ u0 holds

∣∣∣−u
[
I −R(τ + t, τ ) Σ−1(τ )

] x
u

∣∣∣ ≤ ε

d∑
j=1

|xj |
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Next, we want to study the other term of (2.98). By (2.86),

d τ (t) ∼
n∑

i=1

[
A2,i

[
(τi + ti)

βi − τβi
i

]
+ Sαi,A5,i(ti)

]
w

+
∑
i,j∈F

τ
βj/2
j

[
(τi + ti)

βi/2 − τ
βi/2
i

][
A6,i,j + A1,iΣ

−1A⊤
1,j

]
w + ϵ(τ , t)

with ϵ satisfying the following condition:

for every ε > 0, there exists δ > 0 such that if |τ |, |t| < δ, then

|ϵ(τ , t)| ≤ ε
n∑

i=1

[
τβi
i + tβi

i + |ti|αi

]
.

(2.100)

Bounding the mixed terms sum by

2 τ
βj/2
j

[
(τi + ti)

βi/2 − τ
βi/2
i

]
≤ ε τ

βj

j + ε−1
[
(τi + ti)

βi/2 − τ
βi/2
i

]2
with the same ε as above, we obtain the following inequality:

|d τ (t)| ≤ c

n∑
i=1

[[
(τi + ti)

βi − τβi
i

]
+ ε−1

[
(τi + ti)

βi/2 − τ
βi/2
i

]2
+ |ti|αi

]
+ ε

n∑
i=1

[
τβi
i + tβi

i

]
.

Set again τ ⇝ u−2/ν Λk and t⇝ u−2/ν t. New k and t belong to Qu and [0,Λ] correspondingly.

Using the following inequality

(x + 1)β − xβ ≤ c (x ∨ 1)β−1 if x ≥ 0, (2.101)

which is valid with some constant c > 0, we obtain that

(Λi ki + ti)
ζ − (Λi ki)

ζ ≤
[
(Λi ki + Λi)

ζ − (Λi ki)
ζ
]
≤ c2 Λζ

i (ki ∨ 1)ζ−1

for ζ = βi or ζ = βi/2. Therefore, the first condition of (2.39) holds with

G := c3

n∑
i=1

[
u2−2βi/νiΛβi

i

[
(ki ∨ 1)βi−1 + ε−1 (ki ∨ 1)βi−2 + ε

(
kβi
i + 1

) ]
+ u2−2αi/νiΛαi

i

]
,

where ε can be made as small as required by taking u large enough.

Next, we seek for a bound of the variance of w⊤
F χu,k,F (t). We have:

Var
{
w⊤

F χu,k,F (t)
}

= Var

∑
j∈F

wjχu,k,j(t)

 =
∑
j∈F

w2
j [Ku,k(t, t)]jj ,

where Ku,k is the covariance of χu,k(t):

Ku,k(t, s) = E

{[
χu,k(t) − du,k(t)

][
χu,k(s) − du,k(s)

]⊤}
= u2Ru,Λk(t, s).

By Lemma 2.20, we have that
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Rτ (t, t) =
n∑

i=1

[
Sαi,A5,i(ti) + Sαi,A5,i(−ti)

]
+
∑
i,j∈F

[
A6,i,j + A1,iΣ

−1A⊤
1,j

] (
(τi + ti)

βi/2 − τ
βi/2
i

)(
(τj + tj)

βj/2 − τ
βj/2
j

)
+ ϵ(τ , t)

with ϵ satisfying (2.100). Setting τ ⇝ u−2/νΛk and t ⇝ u−2/νt, and using again (2.101), we
find that the second condition of (2.39) holds with

σ2 := c4

n∑
i=1

[
u2−2βi/νi Λβi

i

[
(ki ∨ 1)βi−2 + ε

(
kβi
i + 1

) ]
+ u2−2αi/νiΛαi

i

]
,

where c4 > 0 and ε can be made arbitrarily small by taking u to be large enough. Adding the
two bounds together yields

G + σ2 = c5

n∑
i=1

[
u2−2βi/νiΛβi

i

[
(ki ∨ 1)βi−1 + ε−1 (ki ∨ 1)βi−2 + ε

(
kβi
i + 1

) ]
+ u2−2αi/νiΛαi

i

]
.

2.6.5 Calculations from the double sum lemma

The covariance function of the field (X(t) + X(s))/2 is given by:

R(t1, s1, t2, s2) =
1

4
E

{[
X(t1) + X(s1)

][
X(t2) + X(s2)

]⊤}

=
1

4

[
R(t1, t2) + R(t1, s2) + R(s1, t2) + R(s1, s2)

]
. (2.102)

Inverse of Sigma

By (2.102), we have

Σ(t, s) =
1

4

[
Σ(t) + Σ(s) + R(t, s) + R(s, t)

]
.

Using (2.90), we can rewrite it as follows:

Σ(t, s) = Σ − 1

4

[
C(t, t) + C(s, s) + C(t, s) + C(s, t)

]
=: Σ −B(t, s),

where we have introduced one more shorthand B(t, s). Similarly to what we did in Lemma 2.17,

Σ−1(t, s) − Σ−1 = Σ−1B(t, s) Σ−1 + Σ−1B(t, s) Σ−1B(t, s) Σ−1 + ϵ, (2.103)

where, similarly to (2.91), ϵ can be shown to satisfy

ϵ = O

(
n∑

i=1

[
t3βi
i + s3βi

i + |ti − si|3αi

])
.
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Using (2.92), we can find an expression for B(t, s):

B(t, s) ∼ 1

4

∑
i,j∈F

A6,i,j

[
t
βi/2
i t

βj/2
j + s

βi/2
i s

βj/2
j + t

βi/2
i s

βj/2
j + s

βi/2
i t

βj/2
j

]

+
1

4

n∑
i=1

[
2B1,i t

β′
i

i + 2B2,i t
βi
i + 2B1,i s

β′
i

i + 2B2,i s
βi
i

+ Sαi,A5,i(ti − si) + Sαi,A5,i(si − ti)
]

(2.104)

with Bk,i = Ak,i + A⊤
k,i, k = 1, 2 and within the same magnitude of error. The quadratic term

of (2.103) reads:

B(t, s) Σ−1B(t, s) ∼ 1

4

∑
i,j∈F

B1,i Σ−1B1,j

[
t
βi/2
i t

βj/2
j + s

βi/2
i s

βj/2
j + t

βi/2
i s

βj/2
j + sβi

i t
βj/2
j

]
.

Finally, we arrive at

Σ−1(t, s) − Σ−1 ∼ 1

4
Σ−1

n∑
i=1

[
2B1,i t

β′
i

i + 2B2,i t
βi
i + 2B1,i s

β′
i

i + 2B2,i s
βi
i

+ Sαi,A5,i(ti − si) + Sαi,A5,i(si − ti)
]
Σ−1

+
1

4

∑
i,j∈F

Σ−1
[
A6,i,j + B1,i Σ−1B1,j

]
Σ−1

×
[
t
βi/2
i t

βj/2
j + s

βi/2
i s

βj/2
j + t

βi/2
i s

βj/2
j + s

βi/2
i t

βj/2
j

]
.

Rewriting it in terms of D̃i,j = A6,i,j + B1,j Σ−1B1,j at

Σ−1(t, s) − Σ−1 =
1

4
Σ−1

n∑
i=1

[
2B1,i t

β′
i

i + 2B2,i t
βi
i + 2B1,i s

β′
i

i + 2B2,i s
βi
i

+ Sαi,A5,i(ti − si) + Sαi,A5,i(si − ti)
]
Σ−1

+
1

4
Σ−1

∑
i,j∈F

D̃i,j

[
t
βi/2
i s

βj/2
j + s

βi/2
i t

βj/2
j

+ t
βi/2
i t

βj/2
j + s

βi/2
i s

βj/2
j

]
Σ−1 + ϵ.

(2.105)

The error term ϵ satisfies

ϵ = o

(
n∑

i=1

[
tβi
i + sβi

i + |ti − si|αi

])
. (2.106)

Exponential prefactor

Multiplying (2.105) by b on both sides, and using the fact that by A2.3

w⊤B1,iw = 0, w⊤B2,iw = 2w⊤A2,iw, w⊤D̃i,j w = Ξi,j ,
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where Ξi,j is defined in (2.81), and also

w⊤Sα,A(t)w = w⊤Aw 1t≥0 |t|α + w⊤A⊤w
=w⊤Aw

1t<0 |t|α = w⊤Aw |t|α,

we obtain

b⊤
[
Σ−1(τ ,λ) − Σ−1

]
b ∼

n∑
i=1

[
w⊤A2,iw

[
τβi
i + λβi

i

]
+

w⊤A5,iw

2
|λi − τi|αi

]

+
1

4

∑
i,j∈F

Ξi,j

[
τ
βi/2
i λ

βj/2
j + λ

βi/2
i τ

βj/2
j + τ

βi/2
i τ

βj/2
j + λ

βi/2
i λ

βj/2
j

]
(2.107)

with the same error as in (2.106).

Conditional mean: formula

The conditional mean vector dτ ,λ(t, s) of the field (X(t) + X(s))/2 is given by

dτ ,λ(t, s) =
[
I −R(τ + t,λ + s, τ ,λ) Σ−1(τ ,λ)

]
b,

where R(t1, s1, t2, s2) is defined by (2.102).

As in the proof of 2.19, to simplify the computations define C and B by

R(τ + t,λ + s, τ ,λ) =: Σ − C, Σ−1(τ ,λ) =: Σ−1 + Σ−1B Σ−1.

With these shorthands, we have

I −R(τ + t,λ + s, τ ,λ) Σ−1(τ ,λ) = I −
[
Σ − C

][
Σ−1 + Σ−1B Σ−1

]
= (C −B) Σ−1 + C Σ−1B Σ−1.

(2.108)

By (2.103),

C =
1

4

[
C(τ + t, τ ) + C(τ + t,λ) + C(λ + s, τ ) + C(λ + s,λ)

]
with

C(t, s) ∼
n∑

i=1

[
A1,i t

β′
i + A2,i t

βi + A⊤
1,i s

β′
i

i + A⊤
2,i s

βi
i + Sαi,A5,i(ti − si)

]
+
∑
i, j∈F

A6,i,j t
βi/2
i s

βj/2
j ,

and

B ∼ 1

4

n∑
i=1

[
2B1,i τ

β′
i

i + 2B2,i τ
βi
i + 2B1,i λ

β′
i

i + 2B2,i λ
βi
i + Sαi,A5,i(τi − λi) + Sαi,A5,i(τi − λi)

]

+
1

4

∑
i,j∈F

D̃i,j

[
τ
βi/2
i τ

βj/2
j + τ

βi/2
i λ

βj/2
j + λ

βi/2
i τ

βj/2
j + λ

βi/2
i λ

βj/2
j

]
Let us calculate the leading order coefficients in (2.108). First, the S-type contributions are

F1 :=
1

4

n∑
i=1

[
2Sαi,A5,i(ti) + 2Sαi,A5,i(si) + Sαi,A5,i(τi + ti − λi)
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+ Sαi,A5,i(λi + si − τi) − Sαi,A5,i(τi − λi) − Sαi,A5,i(λi − τi)
]
Σ−1. (2.109)

Next, the leading power-type orders give

(τi + ti)
β′
i − τ

β′
i

i , (λi + si)
β′
i − λβi

i :
1

2
A1,i,

(τi + ti)
βi − τβi

i , (λi + si)
βi − λβi

i :
1

2
A2,i.

It remains to compute the mixed terms: from C −D:

(τi + ti)
βi/2 τ

βj/2
j , (λi + si)

βi/2 λ
βj/2
j ,

(τi + ti)
βi/2 λ

βj/2
j , (λi + si)

βi/2 τ
βj/2
j

:
1

4
A6,i,j (2.110)

and
τ
βi/2
i τ

βj/2
j , τ

βi/2
i λ

βj/2
j ,

λ
βi/2
i τ

βj/2
j , λ

βi/2
i λ

βj/2
j

: − 1

4
D̃i,j . (2.111)

From C Σ−1B:

(τi + ti)
βi/2 τ

βj/2
j , (τi + ti)

βi/2 λ
βj/2
j ,

(λi + si)
βi/2 τ

βj/2
j , (λi + si)

βi/2 λ
βj/2
j

:
1

4
A1,i Σ−1B1,j (2.112)

and
τ
βi/2
i τ

βj/2
j , τ

βi/2
i λ

βj/2
j ,

λ
βi/2
i τ

βj/2
j , λ

βi/2
i , λ

βj/2
j

:
1

4
A⊤

1,i Σ−1B1,j . (2.113)

Combining (2.110) and (2.112) gives

(τi + ti)
βi/2 τ

βj/2
j , (τi + ti)

βi/2 λ
βj/2
j ,

(λi + si)
βi/2 τ

βj/2
j , (λi + si)

βi/2 λ
βj/2
j

:
1

4
A6,i,j +

1

4
A1,i Σ−1B1,j .

Similarly for (2.111) and (2.113):

τ
βi/2
i τ

βj/2
j , τ

βi/2
i λ

βj/2
j ,

λ
βi/2
i τ

βj/2
j , λ

βi/2
i , λ

βj/2
j

: − 1

4
A6,i,j −

1

4
A1,i Σ−1B1,j ,

where we have used

−D̃i,j + A⊤
1,i Σ−1B1,j = −A6,i,j −B1,i Σ−1B1,j + A⊤

1,i Σ−1B1,j = −A6,i,j −A1,i Σ−1B1,j

The aggregate power-type contribution is

F2 :=
1

2

n∑
i=1

[
A1,i

[(
(τi + ti)

β′
i − τ

β′
i

i

)
+
(

(λi + si)
β′
i − λ

β′
i

i

)]

+A2,i

[(
(τi + ti)

βi − τβi
i

)
+
(

(λi + si)
βi − λβi

i

)]]
Σ−1

+
1

4

∑
i,j∈F

[
A6,i,j + A1,i Σ−1B1,j

]
Σ−1

(
τ
βj/2
j + λ

βj/2
j

)

×

[(
(τi + ti)

βi/2 − τ
βi/2
i

)
+
(

(λi + si)
βi/2 − λ

βi/2
i

) ]
(2.114)
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We have thus shown that

I −R(τ + t,λ + s, τ ,λ) Σ−1(τ ,λ) = F1 + F2 + ϵ (2.115)

with F2 defined in (2.114), F1 defined in (2.109) and the error ϵ of order

o

(
n∑

i=1

[
τβi
i +λβi

i +tβi
i +sβi

i + |ti|αi + |si|αi + |ti−si|αi + |τi+ti−λi|αi + |λi+si−τi|αi

])
. (2.116)

Conditional mean: upper bound

Recall that we are interested in the upper bound for the rescaled conditional mean vector du,τ ,λ

uniform in t, s ∈ [0,S] and τ and λ such that with some I ′ ⊂ I

0 ≤ τ ≤ λ ≤ u2/ν−2/βΛ/S, τJ∪K = λJ∪K = 0J∪K,

τI′ = λI′ , τI\I′ + SI\I′ < λI′\I .
(2.117)

Let us bound F1w and F2w separately.

Bound for F1w. Multiplying F1 by w on the right and rescaling all time parameters by u−2/ν ,
we find that

u2 F1,uw :=
1

4

n∑
i=1

u2−2αi/νi
[
2Sαi,A5,i(ti) + 2Sαi,A5,i(si) + Sαi,A5,i(τi + ti − λi)

+ Sαi,A5,i(λi + si − τi) − Sαi,A5,i(τi − λi) − Sαi,A5,i(λi − τi)
]
w.

Then, with some c1 > 0 holds∣∣Sαi,A5,i(ti)w
∣∣ , ∣∣Sαi,A5,i(si)w

∣∣ ≤ c1 S
αi
i

and, using ∣∣∣|x± 1|ζ − xζ
∣∣∣ ≤ c2 (x ∨ 1)ζ−1 for x ≥ 0, (2.118)

we find that∣∣∣[Sαi,A5,i(τi + ti − λi) − Sαi,A5,i(τi − λi)
]
w
∣∣∣ ≤ c3

[
(λi − τi − ti)

αi − (λi − τi)
αi

]
≤ c4 Si ((λi − τi) ∨ Si)

αi−1 ,∣∣∣[Sαi,A5,i(λi + si − τi) − Sαi,A5,i(λi − τi)
]
w
∣∣∣ ≤ c5

[
(λi − τi + si)

αi − (λi − τi)
αi

]
≤ c6 Si ((λi − τi) ∨ Si)

αi−1 .

Bound for F2w. Multiplying F2 by w on the right, rescaling all time parameters by u−2/ν

and using A1,iw = 0 yields

u2 F2,uw =

n∑
i=1

u2−2βi/νi Bi +
∑
i,j∈F

u2−βi/νi−βj/νj Bi,j , (2.119)
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where we have introduced two shorthands

Bi :=
1

2
A2,iw

[(
(τi + ti)

βi − τβi
i

)
+
(

(λi + si)
βi − λβi

i

)]
Bi,j :=

1

4
Di,j w

[(
(τi + ti)

βi/2 − τ
βi/2
i

)
+
(

(λi + si)
βi/2 − λ

βi/2
i

) ](
τ
βj/2
i + λ

βj/2
j

)
.

They can all be bounded using (2.101) as follows:

|Bi| ≤ c1Si (λi ∨ Si)
βi−1, |Bi,j | ≤ c1

[
Si (τi ∨ Si)

βi−1 + Sj (λj ∨ Sj)
βj−1

] (
τ
βj/2
j + λ

βj/2
j

)
.

To simplify the bound further, let us get rid of the mixing, applying

2x y ≤ εx + ε−1y (2.120)

to each of the terms. Hence, the right-hand side of (2.119) is at most

c1

n∑
i=1

u2−2βi/νi
[
Si (λi ∨ Si)

βi−1 + ε λβi
j + ε−1 S2

j (λj ∨ Sj)
βj−2

]
.

Error. The error (2.116) is no larger than

ε

n∑
i=1

[
u2−2βi/νi (λi ∨ Si)

βi + u2−2αi/νi ((λi − τi) ∨ Si)
αi

]
,

where ε can be made arbitrarily small by choosing u large enough.

Combined bound.

∣∣u2 du,τ ,λ(t, s)
∣∣ ≤ c1

n∑
i=1

[
u2−2αi/νi

[
Si ((λi − τi) ∨ Si)

αi−1 + ε ((λi − τi) ∨ Si)
αi

]

+ u2−2βi/νi
[
Si (λi ∨ Si)

βi−1 + ε (λi ∨ Si)
βi + ε−1 S2

j (λj ∨ Sj)
βj−2

]]

The right-hand side of this bound can be taken as G for (2.52).

Conditional covariance

Finally, we need a bound for

Rτ ,λ(t1, s1, t2, s2) = R(τ + t1,λ + s1, τ + t2,λ + s2)

+ R(τ + t1,λ + s1, τ ,λ) Σ−1(τ ,λ)R(τ ,λ, τ + t2,λ + s2).

Introduce the following shorthands:

R(τ + t1,λ + s1, τ + t2,λ + s2) =: Σ − C1,

R(τ + t1,λ + s1, τ ,λ) =: Σ − C2,

R(τ ,λ, τ + t2,λ + s2) =: Σ − C3

Σ−1(τ ,λ) =: Σ−1 + Σ−1B Σ−1 + Σ−1B Σ−1B Σ−1,
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Using these shorthands, we find that Rτ ,λ satisfies

Rτ ,λ(t1, s1, t2, s2) ∼ G1 + G2, where


G1 := −C1 + C2 −B + C3,

G2 := B Σ−1C3 + C2 Σ−1B

− C2 Σ−1C3 −B Σ−1B.

We shall also need the following formula:

C(t, s) ∼
n∑

i=1

[
A1,i t

β′
i + A2,i t

βi + A⊤
1,i s

β′
i

i + A⊤
2,i s

βi
i + Sαi,A5,i(ti − si)

]
+
∑
i, j∈F

A6,i,j t
βi/2
i s

βj/2
j ,

Terms with (t1, t2). In G1, these terms come from

G1,1 =
1

4

[
− C(τ + t1, τ + t2) + C(τ + t1, τ ) − C(τ , τ ) + C(τ , τ + t2)

]
.

The following coefficients are zero:

(τi + t1,i)
β′
i , (τi + t1,i)

βi , (τi + t2,i)
β′
i , (τi + t2,i)

βi , τ
β′
i

i , τβi
i .

Mixed terms from G1,1 and G2:

1

4

∑
i,j∈F

Di,j

[
(τi + t1,i)

βi/2 − τ
βi/2
i

][
(τj + t1,j)

βj/2 − τ
βj/2
j

]
.

S-terms:
1

4

n∑
i=1

[
− Sαi,A5,i(t1,i − t2,i) + Sαi,A5,i(t1,i) + Sαi,A5,i(−t2,i)

]
.

Rescaling everything by u−2/ν , we obtain

u2
∥∥terms with
t1 and t2

∥∥ ≤ c1

n∑
i=1

u2−2αi/νi Sαi
i + c1

∑
i,j∈F

u2−βi/νi−βj/νj Si (τi ∨ Si)
βi/2−1 Sj (τj ∨ Sj)

βj/2−1.

We can also simplify the bound by getting rid of the mixing:

u2
∥∥terms with
t1 and t2

∥∥ ≤ c2

n∑
i=1

[
u2−2αi/νi Sαi

i + u2−2βi/νiS2
i (τi ∨ Si)

βi−2
]
.

Terms with (t1, s2). In G1, these terms come from

G1,2 =
1

4

[
− C(τ + t1,λ + s2) + C(τ + t1,λ) − C(λ,λ) + C(τ ,λ + s2)

]
.

The following coefficients are zero:

(τi + t1,i)
β′
i , (τi + t1,i)

βi , (λi + s2,i)
β′
i , (λi + s2,i)

βi , λ
β′
i

i , λβi
i .

Mixed terms from G1,1 and G2:

1

4

∑
i,j∈F

Di,j

[
(τi + t1,i)

βi/2 − τ
βi/2
i

][
(λj + s1,j)

βj/2 − λ
βj/2
j

]
.
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S-terms:

1

4

n∑
i=1

[
−Sαi,A5,i(τi + t1,i −λi − s2,i) +Sαi,A5,i(τi + t1,i)−Sαi,A5,i(τi −λi) +Sαi,A5,i(−λi − s2,i)

]
.

Rescaling everything by u−2/ν , and getting rid of the mixed terms as above, we obtain

u2
∥∥terms with
t1 and t2

∥∥ ≤ c1

n∑
i=1

[
u2−2αi/νi Si ((λi − τi) ∨ Si)

αi−1 + u2−2βi/νi S2
i (λi ∨ Si)

βi−2.
]

The remaining terms (with (s1, t2) and (s1, s2)) may be estimated similarly.

Error. The accumulated error is at most

ε
n∑

i=1

[
u2−2βi/νi(λi ∨ Si)

βi + u2−2αi/νi ((λi − τi) ∨ Si)
αi

]

with ε, which can be made arbitrarily small by taking u large enough.

Combined bound. Combining the bounds together, we find that

u2 ∥Ru,τ ,λ(t1, s1, t1, s1)∥ ≤ c1

n∑
i=1

[
u2−2αi/νi

[
Sαi
i + Si ((λi − τi) ∨ Si)

αi−1 + ε (λi − τi)
αi

]

+ u2−2βi/νi
[
Si(λi ∨ Si)

βi−1 + ε(λi ∨ Si)
βi

]]
.

We have therefore obtained that (2.52) holds with

G + σ2 = c1

n∑
i=1

[
u2−2αi/νi

[
Sαi
i + Si ((λi − τi) ∨ Si)

αi−1 + ε(λi − τi)
αi

]

+ u2−2βi/νi
[
Si (λi ∨ Si)

βi−1 + ε (λi ∨ Si)
βi + ε−1 S2

j (λj ∨ Sj)
βj−2

]]
.

2.6.6 Integral estimate

Proof of Lemma 2.10. Define a collection of sets ΩF =
{
x ∈ Rd : xF > 0, xF c < 0

}
indexed by

F ⊂ {1, . . . , d} and split the integral:∫
Rd

ew
⊤x P {∃ t ∈ [0,Λ] : χx(t) > x} dx =

∑
F∈2d

∫
ΩF

ew
⊤x P {∃ t ∈ [0,Λ] : χx(t) > x} dx .

For x ∈ ΩF the probability under the integral may be bounded as follows:

P {∃ t ∈ [0,Λ] : χx(t) > x}

≤ P
{
∃ t ∈ [0,Λ] : w⊤

F

(
χx,F (t) − E {χx,F (t)}

)
> w⊤

FxF −w⊤
F E {χx,F (t)}

}

≤ P

∃ t ∈ [0,Λ] : w⊤
F

(
χx − E {χx(t)}

)
> w⊤

FxF −G− ε
d∑

j=1

|xj |


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= P {∃ t ∈ [0,Λ] : ηx,F (t) > rF,ε(x) −G} ,

where

rF,ε(x) = w⊤
F xF − ε

d∑
j=1

|xj | and ηx,F (t) = w⊤
F

(
χx,F (t) − E {xx,F (t)}

)
.

Let us split the domain ΩF into two parts

ΩF,+ = {x ∈ ΩF : rF,ε(x) > G} and ΩF,− = ΩF \ ΩF,+.

Let us first deal with the integral over ΩF,−. It follows from w⊤
F xF − ε

∑d
j=1 |xj | < G that∑

j∈F
(wi − ε)|xj | − ε

∑
j∈F c

|xj | < G

or, with w∗ = minj∈F wj > 0 and ε < w∗,

ε
∑
j∈F

|xj | ≤
εG

w∗ − ε
+

ε2

w∗ − ε

∑
j∈F c

|xj |

Therefore, with r = rF,ε(x), we have

w⊤x = r + w⊤
F c xF c + ε

d∑
j=1

|xj | = r + ε
∑
j∈F

|xj | −
∑
j∈F c

(wj − ε)|xj |

≤ r +
εG

w∗ − ε
−
(
w∗ −

ε2

w∗ − ε
− ε

) ∑
j∈F c

|xj | ≤ r +
εG

w∗ − ε
,

provided that ε is small enough. Bounding the probability under the integral by 1 and changing
the variables, we obtain∫

ΩF,−

ew
⊤x P {∃ t ∈ [0,Λ] : χx(t) > x} dx ≤

∫
ΩF,−

ew
⊤x dx =

∫ G

−∞
dr

∫
dS ew

⊤x |r|d−1

≤
∫ G

−∞

∫
dS er+εG/(w∗−ε)|r|d−1 dr dS ≤ c1e

εG/(w∗−ε)

∫ G

−∞
e(1+ε)r dr = c1 e

c2G.

Next, we concentrate on the intergral over ΩF,+. By Piterbarg inequality, we have the following
uniform in x ∈ ΩF,+ upper bound:

P {∃ t ∈ [0,Λ] : ηx,F (t) > x} ≤ c3

(
r(x) −G

σ

)2/γ

exp

(
−1

2

(
r(x) −G

σ

)2
)
.

Plugging this bound into the integral and changing the variables, we obtain∫
ΩF,+

ew
⊤x P {∃ t ∈ [0,Λ] : χx(t) > x} dx

≤ c3

∫
ΩF,+

ew
⊤x

(
r(x) −G

σ

)2/γ

exp

(
−1

2

(
r(x) −G

σ

)2
)
dx
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= c3

∫ ∞

G
dr

∫
dS ew

⊤x

(
r −G

σ

)2/γ+d−1

exp

(
−1

2

(
r −G

σ

)2
)
.

Note that with w∗ = maxi=1,...,dwi we have

r =
∑
i∈F

(wi − ε)|xi| − ε
∑
i∈F c

|xi| ≥ (w∗ − ε)
∑
i∈F

|xi| − ε
∑
i∈F c

|xi|

and it follows that for all ε < w∗ the following bound holds:

ε
∑
i∈F

|xi| ≤
εr

w∗ − ε
+

ε2

w∗ − ε

∑
i∈F c

|xi|.

This bound yields

(w,x) = r + ε

d∑
i∈F

|xi| −
∑
i∈F c

(wi − ε)|xi| ≤
(

1 +
ε

w∗ − ε

)
r −

(
w∗ − ε− ε2

w∗ − ε

)∑
i∈F c

|xi|,

from which for small enough ε follows that (w,x) ≤ (1 + ε′)r, with ε′ = ε/(w∗ − ε). Hence,

c3

∫ ∞

G
dr

∫
dS ew

⊤x

(
r −G

σ

)2/γ+d−1

exp

(
−1

2

(
r −G

σ

)2
)

≤ c4

∫ ∞

−∞
e(1+ε′)r exp

(
−1

2

(
r −G

σ

)2
)
dr ≤ c5 e

c6(G+σ2),

where in the last step we used the Gaussian mgf formula E
{
etN (µ,σ2)

}
= etµ+t2σ2/2 with t =

1 + ε′.

2.6.7 Double crossing: vicinity of the diagonal

Proof of Lemma 2.1. We begin the proof with the following upper bound:

P {∃ t ∈ Dε : X(t1) > au, X(t2) < −bu} ≤ P
{
∃ t ∈ D+

ε : X(t1) −X(t2) > (a + b)u
}

+ P
{
∃ t ∈ D−

ε : X(t1) −X(t2) > (a + b)u
}
,

where

D+
ε =

{
t = (t, s) ∈ [0, T ]2 : t < s ≤ t + ε

}
, D−

ε =
{
t = (t, s) ∈ [0, T ]2 : s < t ≤ s + ε

}
.

Define a Gaussian field

X (s, l) := X(s + l) −X(s), (s, l) ∈ T := [0, T ] × [0, ε]

and use it to coarsen the bound above:

P
{
∃ t ∈ D−

ε : X(t1) −X(t2) > (a + b)u
}
≤ P {∃ (s, l) ∈ T : X (s, l) > (a + b)u} .

The variance of this Gaussian random field is

σ2(s, l) = Var{X (s, l)} = E
{

[X(s + l) −X(s)]2
}
≤ f(ε).
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By Borell-TIS inequality (2.22), there exists µ > 0 such that for all u > µ

P {∃ (s, l) ∈ T : X (s, l) > (a + b)u} ≤ exp

(
−(u− µ)2

2 f(ε)

)
.

Since f(ε) → 0 by the hypotheses of the theorem, for any δ > 0 there exists some ε > 0 such
that f(ε) < 1/4 δ. Therefore,

P {∃ t ∈ Dε : X (s, l) > (a + b)u} ≤ o
(
e−δu2

)
.

2.6.8 Double crossing for stationary processes: expansions

Proof of Lemma 2.2. Consider X1(t) = (X(t1),−X(T − t2))
⊤. We want to find the expansion

of

R(t, s) = E
{
X1(t)X1(s)⊤

}
=

(
ρ(|t1 − s1|) −ρ(|T − s2 − t1|)

−ρ(|T − t2 − s1|) ρ(|t2 − s2|)

)
near t = 0. We have:

Σ =

(
1 −ρ(T )

−ρ(T ) 1

)
,

and

Σ −R(t, s) =

(
1 − ρ(|t1 − s1|) ρ(|T − s2 − t1|) − ρ(T )

ρ(|T − t2 − s1|) − ρ(T ) 1 − ρ(|t2 − s2|)

)
= A2,1 t1 + A2,2 t2 + A⊤

2,1 s2 + A⊤
2,2 s2 + A5,1 |t1 − s1|α + A5,2 |t2 − s2|α

+ o (t1 + t2 + s1 + s2 + |t1 − s1|α + |t2 − s2|α) ,

where the matrix coefficients are given by

A2,1 = A⊤
2,2 = −ρ′(T )

(
0 1
0 0

)
, A5,1 = ϑ

(
1 0
0 0

)
, A5,2 = ϑ

(
0 0
0 1

)
.

Clearly, α1 = α2 = α. Next, we need the optimal vector

w = Σ−1(0) (a, b)⊤ =
1

1 − ρ2(T )

(
1 ρ(T )

ρ(T ) 1

)(
a
b

)
=

1

1 − ρ2(T )

(
a + bρ(T )
b + aρ(T )

)
to check whether we have correctly identified β1 = β2 = 1. That is, we need to check A2.4

ξ1 = w⊤A2,1w = ξ2 = w⊤A2,2w =
−ρ′(T )(a + bρ(T ))(b + aρ(T ))

(1 − ρ2(T ))2
> 0.

We also need to check A2.5:

κ1 = w⊤A5,1w = κ2 = w⊤A5,2w =
C(b + aρ(T ))2

(1 − ρ2(T ))2
> 0.

Assumption A3 may be shown as follows:

E
{
|X(t) −X(s)|2

}
= E

{
(X(t1) −X(s1))

2 + (X(t2) −X(s2))
2
}

= 2(1 − ρ(|t1 − s1|)) + 2(1 − ρ(|t2 − s2|))

≤ c1

(
|t1 − t2|α + |t2 − s2|α

)
with some constant c1 > 0. The last inequality follows from the asymptotics of ρ(t) near t = 0.
Hence, Assumption A3 is satisfied with γ = (α, α)⊤.
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2.6.9 Double crossing for fBm: minimization of generalized variance

Proof of Lemma 2.3. We begin the proof by making use of the positive homogenity of the gen-
eralized variance σ−2

a,b . Namely, for c > 0 we have

σ−2
a,b(ct) = c−2Hσ−2

a,b(t).

Therefore, if we assume that t = (t1, t2)
⊤ lies in the lower triangle t1 > t2, we obtain from the

equation above

σ−2
a,b(t1, t2) =

(
t1
T

)−2H

σ−2
a,b

(
T,

T t2
t1

)
≥ σ−2

a,b

(
T,

T t2
t1

)
,

since (t1/T )−2H ≥ 1. Since t1 > t2, we have that t′2 = Tt2/t1 ∈ (0, T ) and it follows that

min
t1>t2

σ−2
a,b(t1, t2) ≥ min

t′2∈[0,T ]
σ−2
a,b(T, t′2),

hence, to minimize t 7→ σ−2
a,b(t) in the lower triangle we only need to minimize t2 7→ σ−2

a,b(T, t2) in
t2 ∈ (0, T ). Similarly, to minimize t 7→ σ−2

a,b(t) in the upper triangle, we only need to minimize
t1 7→ σ−2

a,b(t1, T ) in t1 ∈ (0, T ).

If a < b, the following trivial inequality

σ−2
a,b(t, T ) =

a2t2H + 2abr(t, T ) + b2T 2H

(tT )2H − r2(t, T )
>

a2T 2H + 2abr(t, T ) + b2t2H

(tT )2H − r2(t, T )
= σ−2

a,b(T, t)

shows, that the minimum over lower triangle is strictly smaller than the minimum over upper
triangle. Therefore, the global minimum lies in t1 > t2. Similarly, if a > b, the global minimum
lies in t1 < t2. If a = b, we have two global minima.

Let us proceed to showing that the function

t 7→ σ−2
a,b(T, s) =

a2s2H + 2abr(s, T ) + b2T 2H

(sT )2H − r2(s, T )

possesses a unique minimum in t ∈ (0, T ). Without loss of generality, we may rewrite this
function as

σ−2
a,b(T, s) =

a2

T 2H
Db/a

( s

T

)
, (2.121)

where

Dα(s) :=
α2 + 2αf(s) + s2H

s2H − f2(s)
=

(α + f(s))2

s2H − f2(s)
+ 1 s ∈ (0, 1),

where we introduced the function

f(s) =
1

2

(
s2H + 1 − (1 − s)2H

)
.

A straightforward approach would be to show that D′
α(0+) < 0, D′

α(1−) > 0 and that D′′
α > 0.

The first two claims are easily seen to be true, but, unfortunately, the third is false. The idea
we shall employ to get around this issue is to multiply the function D′

α by an appropriately
chosen and strictly positive function U > 0, so that the roots of D′

αU remained the same as
the roots of D′

α, but D′
αU became strictly increasing. We now proceed to finding such multiplier.
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First, rewrite D′
α collecting α-free and α-dependent terms:

D′
α(s) =

2H(α + f(s))

(s2H − f2(s))2

(
αGα(s) + G0(s)

)
, (2.122)

where

Gα(s) =
f(s)f ′(s)

H
− s2H−1, G0(s) =

f ′(s)s2H

H
− f(s)s2H−1.

We can drop the positive factor
2H(α + f(s))

(s2H − f2(s))2
> 0,

since the roots of D′
α are that of αGα(s) + G0(s). Unfortunately, this remainder is still non-

monotone.

Proceding with the computations, we expand the derivatives and find that

Gα(s) = f(s)
(
s2H−1 + (1 − s)2H−1

)
− s2H−1

= f(s)(1 − s)2H−1 − (1 − f(s))s2H−1

= f(s)(1 − s)2H−1 − f(1 − s)s2H−1

= s2H−1(1 − s)2H−1
(
f(s)s1−2H − f(1 − s)(1 − s)1−2H

)
,

where in the second to last equality we used the identity f(s) + f(1 − s) = 1. We can now
represent Gα(s) as

Gα(s) = s2H−1(1 − s)2H−1
(
A(s) −A(1 − s)

)
, A(s) = f(s)s1−2H .

Similarly, but using the identity f(s) − f(1 − s) = s2H − (1 − s)2H , we obtain a representation
of G0(s)

G0(s) =
(
s2H−1 + (1 − s)2H−1

)
s2H − f(s)s2H−1

=
(
s2H−1 + (1 − s)2H−1

)
s2H −

(
f(1 − s) + s2H − (1 − s)2H

)
s2H−1

= −f(1 − s)s2H−1 +
(

(1 − s)2H−1s2H + (1 − s)2Hs2H−1
)

= s2H−1(1 − s)2H−1
(
−A(1 − s) + 1

)
.

We can now rewrite (2.122) as

D′
α(s) = D̃α(s) G̃α(s), (2.123)

with

G̃α(s) := α
(
A(s) −A(1 − s)

)
−A(1 − s) + 1, (2.124)

D̃α(s) :=
2H(α + f(s))s2H−1(1 − s)2H−1

(s2H − f2(s))2
. (2.125)

We claim now that the function G̃α(s) is increasing. Provided that this is true, we immediately
obtain both existence and uniqueness of the optimal point s∗, as well as positivity of the second
derivative at this point. Indeed,

D′′
α(s∗) = D̃′

α(s∗) G̃α(s∗)

=0

+ D̃α(s∗)

>0

G̃′
α(s∗)

>0

> 0. (2.126)
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To prove this claim it clearly suffices to show that A(s) is increasing.

We have,
A′(s) = f ′(s)s1−2H + (1 − 2H)f(s)s−2H

and the positivity of A′(s) is equivalent to that of

sf ′(s) + (1 − 2H)f(s).

In case H ≤ 1/2, the inequality

sf ′(s) + (1 − 2H)f(s) > 0

is clear, since f ′(s) > 0. If H > 1/2, we use the Bernoulli inequality

(1 − s)2H−1 ≤ 1 − (2H − 1)s, s ∈ [0, 1],

which gives

sf ′(s) + (1 − 2H)f(s) = (1 − 2H) + s2H − (1 − s)2H + 2H(1 − s)2H−1

≥ (1 − 2H) + s2H − (1 − s)
(

1 − (2H − 1)s
)

+ 2H(1 − s)2H−1

= s2H − (2H − 1)s2 + 2H
(

(1 − s)2H−1 − (1 − s)
)

≥ s2H − (2H − 1)s2 = s2
(
s2H−2 − 2H + 1

)
≥ 2s2

(
1 −H

)
> 0.

As a corollary of the above, we obtain αGα(s∗) + G0(s∗) = 0 or

α

[
r(s∗, 1)

(
s2H−1
∗ + (1 − s∗)

2H−1
)
− s2H−1

∗

]

+

[
s2H∗

(
s2H−1
∗ + (1 − s∗)

2H−1
)
− r(s∗, 1)s2H−1

∗

]
= 0,

(2.127)

which will be useful for us in Lemma 2.4.

We have thus shown that the function

σ−2
b (t, s) =

a2s2H + 2abr(t, s) + b2Ht2

(ts)2H − r2(t, s)

posesses a unique minimum in the lower triangle. By (2.121), we see that this point is given by

t∗ = Ts∗,

where s∗ is the minimizer of D. Moreover, we have by (2.123)

∂σ−2
b

∂s
(T, t∗) =

a2

T 2H
D̃b/a(s∗) G̃b/a(s∗)

=0

= 0
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and by (2.126) we obtain

κ2 :=
∂2σ−2

b

∂s2
(T, t∗) =

a2

T 2H
D′′

b/a(s∗) =
a2

T 2H
D̃b/a(s∗)G̃

′
b/a(s∗) > 0

Similarly to (2.121), let us rewrite σ−2
b as follows:

σ−2
b (t, s) =

a2

t2H
Db/a

(s
t

)
implying

−κ1 :=
∂σ−2

b

∂t
(T, t∗) = − 2Ha2

T 2H+1
Db/a(s∗) +

a2

T 2H

[
−s∗
T 2

]
D′

b/a(s∗)

=0

< 0.

Finally, we have
σ−2
b (t∗) − σ−2

b (t∗ − τ ) ∼ −κ1 τ1 − κ2 τ
2
2 .

2.6.10 Double crossing for fBm: matrix expansions

Proof of Lemma 2.4. Let t∗ = (T, t∗) be a point in [0, T ]2 minimizing the generalized variance
σ−2
a,b(t).

Recall that

Σ(t∗) =

(
T 2H −r(T, t∗)

−r(T, t∗) t2H∗

)
, R(t, s) =

(
r(t1, s1) −r(t1, s2)
−r(t2, s1) r(t2, s2)

)
,

where
r(t, s) =

1

2

(
t2H + s2H − |t− s|2H

)
.

We have

Σ(t∗) −R(t∗ + t, t∗ + s) =

(
T 2H − r(T + t1, T + s1) −r(T, t∗) + r(T + t1, t∗ + s2)

−r(t∗, T ) + r(t∗ + t2, T + s1) t2H∗ − r(t∗ + t2, t∗ + s2)

)
.

For the top left cell, we have:

T 2H − r(T + t1, T + s1) = T 2H − 1

2

(
(T + t1)

2H + (T + s1)
2H − |t1 − s1|2H

)
.

Here is the expression for the top right cell:

r(T + t1, t∗ + s2) − r(T, t∗) =
1

2

(
(T + t1)

2H − T 2H
)

+
1

2

(
(t∗ + s2)

2H − t2H∗
)

− 1

2

(
|T − t∗ + t1 − s2|2H − |T − t∗|2H

)
and similarly for the remaining two. Let us compute the first order coefficients of different
contributions. Jumping ahead, we will be giving these coefficients names corresponding to their
roles within Assumption A2. Recall that the first index i in Ai,j corresponds to the order (first
or second) of the contribution, while the second indicates the variable tj . The coefficients of the
corresponding s-terms can be expressed as transpositions of these.
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First, the only two terms which depend on the difference are the following:

|t1 − s1|2H : A5,1 :=
1

2

(
1 0
0 0

)
, |t2 − s2|2H : A5,2 :=

1

2

(
0 0
0 1

)
, α1 = α2 = 2H.

Next, we proceed to the power-type contributions of the leading order:

t1 : A2,1 := H

(
−T 2H−1 T 2H−1 − |T − t∗|2H−1

0 0

)
,

t2 : A1,2 := H

(
0 0

t2H−1
∗ + |T − t∗|2H−1 −t2H−1

∗

)
.

We will show below that
w⊤A2,1w > 0 and A1,2w(t) ∼ 0, (2.128)

whence the names A2,1 and A1,2. It also explains why we do not need to compute the second
order in t1. However, we do need to find the second order in the second coordinate:

t22 : A2,2 := H

(
H − 1

2

)(
0 0

t2H−2
∗ + |T − t∗|2H−2 −t2H−2

∗

)
, (2.129)

and the coefficient A6,2,2 of t2 s2 is zero. To show (2.128), we need the inverse of Σ

Σ−1(t) =
1

t2H1 t2H2 − r2(t1, t2)

(
t2H2 r(t1, t2)

r(t1, t2) t2H1

)
and its action on the vector w(t):

w(t) = Σ−1(t) b =
1

t2H1 t2H2 − r2(t1, t2)

(
t2H2 a + r(t1, t2) b

r(t1, t2) a + t2H1 b

)
.

Using the following identity (2.127) from Lemma 2.3

b

[
r(s∗, 1)

(
s2H−1
∗ +(1−s∗)

2H−1
)
−s2H−1

∗

]
+a

[
s2H∗

(
s2H−1
∗ +(1−s∗)

2H−1
)
−r(s∗, 1)s2H−1

∗

]
= 0

we can show that Assumptions A2.3 to A2.5 are satisfied with

A1,2w(t) ∼ 0, w⊤A2,1w > 0, w⊤A5,2w > 0, β1 = 1, β2 = 2, F = {2},

which gives

Σ −R(t∗ + t, t∗ + s) =
[
A2,1 t1 + A1,2 t2 + A2,2 t

2
2

]
+
[
A⊤

2,1 s1 + A⊤
1,2 s2 + A⊤

2,2 s
2
2

]
+ A5,1 |t1 − s1|2H + A5,2 |t2 − s2|2H + o

(
n∑

i=1

[
t1 + t22 + s1 + s22

])
,

which verifies A2.1 and A2.2. Finally, F×F contains one element (2, 2), and by (2.129) we have
that

A6,2,2 + A1,2Σ
−1A⊤

1,2 = A1,2Σ
−1A1,2 = C2C

⊤
2 with C2 = A1,2 Σ−1/2,

so A2.6 is satisfied.
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Chapter 3

A matrix-valued Schoenberg’s problem
and its applications

In this chapter we present a criterion for positive definiteness of the matrix-valued function

f(t) := exp
(
−|t|α

[
B+ + B− sign(t)

])
,

where α ∈ (0, 2] and B± are real symmetric and antisymmetric d × d matrices. We also find a
criterion for positive definiteness of its multidimensional generalization

f(t) := exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ + B− sign(t⊤s)
]
dΛ(s)

)
,

where Λ is a finite measure on the unit sphere Sd−1 ⊂ Rd under a more restrictive assumption that
B± commute and are normal. The associated stationary Gaussian random field may be viewed as
as a generalization of the univariate fractional Ornstein-Uhlenbeck process. This generalization
turns out to be particularly useful for the asymptotic analysis of Rd-valued Gaussian random
fields. Another possible application of these findings may concern variogram modelling and
general stationary time series analysis.

Pavel Ievlev and Svyatoslav Novikov, A matrix-valued Schoenberg’s problem and its applica-
tions, Electronic Communications in Probability 28 (2023), Paper No. 48, 12. MR4684061
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A matrix-valued Schoenberg’s problem and its applications

3.1 Introduction

In 1938, Schoenberg [1] posed the problem of determining for which numbers α > 0 and norms
∥·∥ on Rn the function t 7→ exp (−∥t∥α) is positive-definite. The complete solution to this
problem has been given in 1992 by Koldobsky [2] for the case where ∥·∥ = ∥·∥q. It is clear
that if (α, ∥·∥) is a pair for which this function is positive definite, then for any B ≥ 0, the
function t 7→ exp (−B ∥t∥α) is also positive definite. However, the question arises whether we
can take B ∈ C instead of B ≥ 0? The application of Bochner’s theorem shows that the answer
is negative. Nonetheless, we can modify this function to make its Fourier transform real. Let
n = 1, let ∥·∥ be the absolute value and consider the following function

t 7→ exp (−B|t|α) 1t≥0 + exp
(
−B|t|α

)
1t<0, t ∈ R. (3.1)

This family of functions, parameterized by α and B, is of great importance in the theory of
stable distributions. This theory provides us with the following answer [3, Remark (7.26)]: (3.1)
is positive definite if and only if

α ∈ (0, 2], ReB ≥ 0 and | ImB | ≤ ReB ·
∣∣∣tan

(πα
2

)∣∣∣ . (3.2)

Motivated by applications in the theory of Gaussian processes (more on that below), we aim to
extend this result to the case where B is a d × d matrix. Specifically, we investigate the nec-
essary and sufficient conditions for positive-definiteness of the matrix-valued function f defined
analogously to (3.1) by

f(t) := exp (−B|t|α) 1t≥0 + exp
(
−B⊤|t|α

)
1t<0, t ∈ R,

with α ∈ (0, 2] and B a real d× d matrix. We will mostly use the following representation of f :

f(t) = exp
(
−|t|α

[
B+ + B− sign(t)

])
, where B± :=

B ±B⊤

2
. (3.3)

The counterpart of the condition (3.2) in this case is

B̃ := B+ sin
(πα

2

)
− iB− cos

(πα
2

)
⊵ 0. (3.4)

Here ⊵ denotes positive definiteness. As it turns out, for α ∈ [1, 2) condition (3.4) is both
necessary and sufficient for positive definiteness of f , whereas for α ∈ (0, 1) it is necessary, but
not sufficient. If α = 2, we need to assume that B+ ⊵ 0. This is the subject of Theorem 3.3.

In Theorem 3.2 we present a multivariate extension of this result under a restrictive assumption
of B being normal (unitarily diagonalizable). More specifically, we use the theory of multivariate
stable laws (see e.g. [4, Chapter 2]) to show that under the same assumption (3.4) for every finite
measure Λ on the unit sphere Sd−1 ⊂ Rd the function

f(t) = exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ + B− sign(t⊤s)
]
dΛ(s)

)
, t ∈ Rd

is positive definite.

Surprisingly, the condition (3.4) arises also from the study of operator fractional Brownian
motions [5, Remark 8]. As it turns out, this is a necessary and sufficient condition for positive
definiteness of the following matrix-valued function

R(t, s) = B|t|α + B⊤|s|α −B|t− s|α for t > s
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and satisfying R⊤(t, s) = R(s, t). This class of multivariate fBm’s is not only interesting in
its own right, but is also essential in the theory of multivariate Gaussian extremes [6]. The
occurrence of the same condition in both problems is not a coincidence. In fact, this observation
leads to significant simplifications in the study of multivariate Gaussian extremes, which will be
the subject of our upcoming paper on the extremes of locally-stationary Rd-valued random fields.
More specifically, the classical Pickands-Piterbarg approach to the asymptotical analysis of high
exceedance probabilities of a non-stationary Gaussian process X(t), t ∈ R heavily relies on the
possibility to find a pair of stationary processes Y±(t), t ∈ R, which stochastically dominate X
from above and from below and are close to X on a given short interval. If X satisfies some
weak assumptions, we can take Y± to be the processes associated to the covariance functions
e−B±|t|α , t ∈ R with specially chosen B±, and apply the Slepian inequality. In the case of Rd-
valued processes, the same approach with the Gordon inequality instead of Slepian’s prompts
the consideration of the process associated to (3.3). It remains, however, to show that (3.3) is a
covariance function, which is exactly what we study in this paper.

The importance of our results is twofold:

1. they can be used to construct valid covariance functions of Rd-valued Gaussian random
fields, and

2. they can be used for cross-variogram and pseudo-variogram modelling, which is important
for statistical applications, see [7].

More specifically, positive definiteness of f implies that the following function

t 7→ I − 1

2

[
exp

(
−|t|α

[
B+ + B− sign(t)

])
+ exp

(
−|t|α

[
B+ −B− sign(t)

])]
, t ∈ R,

with I the identity matrix is a cross-variogram and

t 7→ J − exp
(
−|t|α

[
B+ + B− sign(t)

])
, t ∈ R,

with Jij = 1 (matrix of all ones) is a pseudo-variogram. Under the assumptions of Theorem 3.2,
the same is true for the functions

t 7→ I − 1

2

[
exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ + B− sign(t⊤s)
]
dΛ(s)

)

+ exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ −B− sign(t⊤s)
]
dΛ(s)

)]
, t ∈ Rd,

and

t 7→ J − exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ + B− sign(t⊤s)
]
dΛ(s)

)
, t ∈ Rd.

Finally, let us briefly mention that there are two close relatives of the family of processes corre-
sponding to f : the operator fractional Ornstein-Uhlenbeck process X(t), t ∈ R from [6, Section
3.1], associated to the covariance Cov(X(t),X(s)) = exp(−|t−s|α), where α is a symmetric d×d
matrix with eigenvalues belonging to (0, 2], and the multivariate Ornstein-Uhlenbeck process,
defined as a solution of a certain stochastic differential equation driven by a Brownian motion.
The covariance of the latter is given by

∫ t
0 e

−A(t−s)Be−A(t−s) ds, where A and B are real d × d
matrices satisfying some additional assumptions. See, for example, [8, 9, 10].
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3.1.1 Brief organization of the paper

Section 3.2 contains our main results. It begins with a simplified version of the main theorem
along with its proof, after which we formulate an extension of this simplified version to mul-
tidimensional time. The main result of this contribution is Theorem 3.3. In Section 3.3 we
reproduce for reader’s convenience three known theorems (Operator-valued Bochner’s Theorem,
Bernstein’s theorem on completely monotone functions and the Canonical representations of uni-
variate and multivariate stable laws). The proof of the main theorem is presented in Section 3.4.
More technical results are relegated to the Appendix.

3.1.2 Notation.

Throughout the paper, we use the term “positive-definite” to refer to nonnegative-definite func-
tions. To emphasize the case when the inequality is strict, we use the expression “strictly
positive-definite.”

If f is a matrix-valued function, we write f ⪰ 0 to indicate that f is a positive-definite function
in the following sense: f⊤(t) = f(−t) and

n∑
k,m=1

z∗
k f(tk − tm) zm ≥ 0, ∀ {zk}k=1,...,n ⊂ Cd, {tk}k=1,...,n ⊂ R.

We will utilize the same notation f ⪰ 0 is f is a complex-valued positive-definite function.
Occasionally, we write the sign ≻ to indicate that the positive definiteness is strict.

We also write A⊵ 0 for a matrix A to indicate that A is a positive-definite matrix in the usual
sense, namely,

A = A∗ and z∗A z ≥ 0, ∀ z ∈ Cd.

The corresponding strict version will be denoted by ▷.

Note that we will write “f ⊵ 0” to say that a matrix-valued function f is positive-definite as a
matrix, rather than as a function. The difference between these two notions is crucial for the
matrix-valued Bochner’s Theorem 3.4.

The Fourier transform of a function f is defined by

F [f ](ξ) =

∫
R
eiξxf(x) dx .

The application of F to matrix-valued functions is performed component-wise.

3.2 Main results

In order to provide the reader with an intuitive understanding of the main result, we begin by
presenting a preliminary, simpler version of the theorem that serves as a warm-up example.

More specifically, assume that B is normal, i.e., there exists a diagonal matrix D and an unitary
matrix P such that

B = P ∗DP. (3.5)

The positive definiteness of f is therefore equivalent to that of

g(t) := exp
(
−|t|α

[
D+ + D− sign(t)

])
.
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Since D− is anti-Hermitian, its elements are purely imaginary. We denote them by −iλ−
k :=

(D−)kk, where λ−
k ∈ R. Similarly, the k-th element of D+ is denoted by λ+

k := (D+)kk.

Assume further that the matrix B satisfies (3.4). As mentioned in the Introduction, this condi-
tion turns out to be necessary for positive-definiteness of f . See Section 3.4.1 for the proof.

By definition of positive definiteness, g ⪰ 0 if and only if

∑
i,j

z⊤
i exp

(
−|ti − tj |α

[
D+ + D− sign(ti − tj)

])
zj

=
∑
k

∑
i,j

zik exp
(
−|ti − tj |α

[
λ+
k − iλ−

k sign(ti − tj)
])

zjk

is non-negative for all possible choices of zk ∈ Cn and ti ∈ R. We will show a stronger claim:
for all k, the scalar-valued function

gk(t) := exp
(
−|t|α

[
λ+
k − iλ−

k sign(t)
])

is positive-definite. This function is known as the characteristic function of the α-stable law,
which by the well-known canonical representation theorem (see Theorem 3.6 and Remark 3.2)
is positive definite if and only if

λ+
k ≥ 0 and

∣∣λ−
k

∣∣ ≤ λ+
k

∣∣∣tan
(πα

2

)∣∣∣ . (3.6)

If α ̸= 2, then the assumption B̃ ⊵ 0 implies that these conditions are met. Indeed, if B̃ ⊵ 0,
then

λ+
k sin

(πα
2

)
+ λ−

k cos
(πα

2

)
≥ 0 and λ+

k sin
(πα

2

)
− λ−

k cos
(πα

2

)
≥ 0,

from which the inequalities (3.6) easily follow. If B ⊵ 0, then the inequalities (3.6) are also
satisfied. We have thus proven the following result.

Theorem 3.1. If α ∈ (0, 2) and B is a real d × d normal matrix satisfying (3.4), then the
function defined in (3.3) is positive-definite. If α = 2 and B is a real d × d matrix satisfying
B ⊵ 0, then the function defined in (3.3) is positive-definite.

By the same proof as above with the use of Theorem 3.7 instead of Theorem 3.6, we obtain the
following generalization.

Theorem 3.2 (Multivariate parameter extension of the previous result). Let α ∈ (0, 2], B is a
real d × d normal matrix satisfying (3.4) or B+ ⊵ 0 if α = 2, and Λ is a finite measure on the
unit sphere Sd−1 ⊂ Rd, then the function defined by

f(t) := exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [B+ + B− sign(t⊤s)
]
dΛ(t)

)
is positive definite.

We now proceed to the statement of the general theorem. For p > 0 and a matrix A with
spectrum in C \ (−∞, 0], define

Ap := exp

(
p(A− I)

∫ 1

0
[s(A− I) + I]−1 ds

)
.
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Theorem 3.3. Let B be a real d×d matrix. If the function f defined in (3.3) is positive-definite,
then the conditions (3.4) and B+ ⊵ 0 are satisfied. If, on the other hand, the condition (3.4) is
satisfied, then

• If α ∈ (0, 1) and B is invertible, then f is positive-definite if and only if B additionally satisfies

B1/α + B1/α,⊤ ⊵ 0. (3.7)

• If α ∈ [1, 2), then f is positive definite.

• If α = 2 and B+ ⊵ 0, then f is positive definite.

Remark 3.1. If B is normal, the condition (3.7) follows from (3.4). See Section 3.4.2 for the
proof.

3.3 Auxiliary results

3.3.1 Operator-valued Bochner’s theorem

The following version of Bochner’s theorem is taken from [11, Theorem III.3].

Theorem 3.4 (Operator-valued Bochner Theorem, Neeb 1998). Let G be a locally compact
abelian group, Ĝ its character group, and H a Hilbert space. Then an ultraweakly continuous
function K : G → B(H), where B(H) is the set of bounded operators on H, is positive definite
if and only if there exists a finite Herm+(H)-valued measure µ on Ĝ such that

K(g) =

∫
Ĝ
χ(g) dµ(χ) .

Here Herm+(H) is the cone of bounded positive-definite Hermitian operators on H. The Radon
measure µ is uniquely determined by K.

We are interested in the particular case of this lemma where G = R and H = Rd.1

Corollary 3.1 (Matrix-valued Bochner Theorem on R). A continuous matrix-valued function
f : R → Cd×d is positive definite f ⪰ 0 if and only if there exists a matrix-valued measure µ⊵ 0
on R such that

f(t) =

∫
R
e−iξt dµ(ξ) .

3.3.2 Bernstein’s theorem

An infinitely differentiable function f : (0,∞) → R+ is said to be completely monotone if for
any non-negative integer n ≥ 0 holds

(−1)n
dnf

dtn
(t) ≥ 0, t > 0.

The following version of the celebrated Bernstein’s theorem on completely monotone functions
is taken from [3, Theorem A.3.6].

1See also [12, Theorem 2.10].
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Theorem 3.5 (Bernstein 1928). A real-valued function f is completely monotone if and only if
there exists a measure µ on (0,∞) such that

f(t) =

∫ ∞

0
e−ut dµ(u) .

This measure is finite if limt↓0 f(t) < ∞.

In particular, we will use this theorem with exp(−xα) if α ∈ (0, 1), for which µ is finite, and
exp(−x1/α)x1/α−1/α if α ∈ (1, 2), for which µ is infinite.

3.3.3 Canonical representation of stable laws

Two basic sources on α-stable laws are the monograph by Steutel & van Harn [3] and the
monograph by Uchaikin & Zolotarev [13]. We will need the following result, which is taken
from [3, Theorem 7.11].

Theorem 3.6 (Canonical representation of α-stable laws). For α ∈ (0, 2] \ {1}, a C-valued
function f on Rd is the characteristic function of a centered non-degenerate stable distribution
with exponent α if and only if it is of the form

f(t) = exp
(
−|t|α

[
λ− iθ sign(t)

])
, (3.8)

where λ > 0 and θ satisfies
|θ| ≤ λ

∣∣∣tan
(πα

2

)∣∣∣ . (3.9)

Remark 3.2. As remarked in [3, near formula (7.26)], it follows from this theorem combined
with some simple considerations that the function defined in (3.8) with λ > 0 is positive definite
if and only if the condition (3.9) is satisfied.

If λ = 0 and α ̸= 1, the function (3.8) is positive-definite if and only if θ = 0. In case α = 1,
exp(iθt) is positive definite for any θ ∈ R.

The following extension of the previous theorem immediately follows from [4, Theorem 2.3.1].

Theorem 3.7 (Canonical representation of multivariate α-stable laws). For α ∈ (0, 2] \ {1},
a C-valued function f on R is the characteristic function of a centered non-degenerate stable
random vector with exponent α if and only if there exists a finite measure Λ on the unit sphere
Sd−1 ⊂ Rd such that

f(t) = exp

(
−
∫

Sd−1

∣∣∣t⊤s∣∣∣α [λ− iθ sign(t⊤s)
]
dΛ(s)

)
,

where λ > 0 and θ satisfies (3.9).

Remark 3.3. As above, if α = 1, there are no restrictions on θ.

3.4 Proofs

3.4.1 Necessary condition

Proof of necessity in Theorem 3.3. Suppose that f ⪰ 0. For z ∈ Cn, define

fz(t) := z∗f(t) z.
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It is easy to see that these functions satisfy fz ⪰ 0.2 Note that[
1

z∗z
fz

((
z∗z

n

)1/α

t

)]n
=

[
I − |t|α

n
z∗
[
B+ + B− sign(t)

]
z + O

(
1

n2

)]n
−−−→
n→∞

gz(t)

with
gz(t) = exp

(
−|t|α z∗

[
B+ + B− sign(t)

]
z
)
. (3.10)

Since positive-definiteness of scalar-valued functions is preserved under stretching, taking powers
and taking limits, we have gz ⪰ 0.

Since B− is real antisymmetric, iB− is Hermitian and therefore z∗iB−z ∈ R. By Theorem 3.6
and Remark 3.2, this function is positive-definite if and only if

z∗B+z ≥ 0,
∣∣z∗iB−z

∣∣ ≤ z∗B+z
∣∣∣tan

(πα
2

)∣∣∣ .
Multiplying both sides by | cos(πα/2)| and noting that sin(πα/2) ≥ 0 for α ∈ (0, 2], we find that

±z∗iB−z cos
(πα

2

)
≤ z∗B+z sin

(πα
2

)
,

which is equivalent to
B̃ := B+ sin

(πα
2

)
− iB− cos

(πα
2

)
⪰ 0

because B is real.

3.4.2 Alternative form of the B condition and the eigenvalues of B

Note that
iα−1 = sin

(πα
2

)
− i cos

(πα
2

)
.

Hence, B̃ ⊵ 0 is equivalent to
iα−1B + i1−αB⊤ ⊵ 0.

Therefore, if λ is an eigenvalue of B, it satisfies

Re iα−1λ ≥ 0 and Re i1−αλ ≥ 0

because B is real. Rewriting both in terms of their arguments, we obtain

±(α− 1)π

2
+ arg λ ∈

[
−π

2
,
π

2

]
.

It follows that
arg λ ∈

[
−πα

2
,
πα

2

]
and therefore

Re λ1/α ≥ 0. (3.11)

If B is normal, (3.11) implies that

B1/α + B1/α,⊤ = P⊤
[
D1/α + D∗,1/α

]
P ⊵ 0.

and the condition (3.7) is satisfied.
2Although we will not use it, we want to mention that positive definiteness of scalar-valued projections of a

matrix-valued function f(t, s) is in fact equivalent to the positive-definiteness of f itself if f(t, s) = f(t− s). This
was originally proved in [14]. See also [12, Theorem 2.10] and the references therein.
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3.4.3 Proof of Theorem 3.3

Proof of Theorem 3.3 in the case α ∈ (0, 1). Assume that B is diagonalizable and B̃ ▷ 0
(strictly). That is, there exists an invertible matrix U and a diagonal matrix D such that
B = U−1DU .

By Bernstein’s theorem 3.5, if α ∈ (0, 1) there exists a finite measure µ on R+ such that

e−xα
=

∫ ∞

0
e−ux dµα(u) .

By B̃ ▷ 0, the inequality (3.11) is strict and we can plug x = D1/α|t| into this formula. This
follows from the fact that the measure µα is finite and that exp(−λ1/αt) is bounded for each
eigenvalue λ of D. Hence, we have

e−D|t|α =

∫ ∞

0
e−uD1/αt dµα(u) .

Conjugating both sides of the equality with U , we obtain

e−B|t|α =

∫ ∞

0
e−uB1/α|t| dµα(u), (3.12)

since B1/α = U−1D1/αU . We have thus obtained the following representation of f :

f(t) =

∫ ∞

0

[
e−uB1/α|t|1t≥0 + e−uB1/α,⊤|t|1t≤0

]
dµα(u) .

Let us compute Fourier transforms of both sides:

F
[
exp

(
−uB1/α|t|

)
1t≥0

]
(ξ) = U−1F

[
exp

(
−uD1/α|t|

)
1t≥0

]
(ξ)U

and by

F
[
e−λt 1t≥0

]
(ξ) =

1

λ− iξ
, for Reλ > 0

combined with the fact that B̃ ▷ 0 implies that all eigenvalues λ of B satisfy | Imλ | < Reλ ·
|tan (πα/2)|, we find that

F
[
exp

(
−uB1/α|t|

)
1t≥0

]
(ξ) = U−1

(
uD1/α − iξ

)−1
U =

(
uB1/α − iξ

)−1
.

Hence,

F [f(t)] (ξ) =

∫ ∞

0

[ (
uB1/α − iξ

)−1
+
(
uB1/α,⊤ + iξ

)−1 ]
dµα(u)

=

∫ ∞

0
u
(
uB1/α − iξ

)−1 [
B1/α + B1/α,⊤

] (
uB1/α − iξ

)−1,∗
dµα(u)

By operator-valued Bochner’s theorem 3.4, f(t) ⪰ 0 if and only if its Fourier transform is a
positive definite matrix for each ξ. Setting ξ = 0 we obtain

F [f(t)] (0) =
(
B1/α

)−1 [
B1/α + B1/α,⊤

] (
B1/α

)−1,⊤
∫ ∞

0
u−1dµα(u).

This matrix is positive-definite if and only if

B1/α + B1/α,⊤ ⊵ 0, (3.13)
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hence this is a necessary condition for the positive definiteness of f . Note however that if this
condition is satisfied, then(

uB1/α − iξ
)−1 [

B1/α + B1/α,⊤
] (

uB1/α,⊤ − iξ
)−1,∗

⊵ 0

for each ξ and F [f ](ξ)⊵ 0 pointwise.

Proof of Theorem 3.3 in the case α ∈ [1, 2). As in the proof for the case α ∈ (0, 1), our approach
is to find an appropriate representation for the Fourier transform of f . Assume that ξ ≥ 0. Also
assume for now that B̃ ▷ 0. Then there exists θ ∈ (1− 1/α, 1/α) such that iαθB + i−αθB⊤ ▷ 0.
The following formula

F
[
e−Btα1t≥0

]
(ξ) =

∫ ∞

0
eitξI−Btα dt = iθ

∫ ∞

0
e−iθ−1tξI−Btαiαθ

dt (3.14)

is proven in the Appendix. Performing a change of variables s = tα, we get

F
[
e−Btα1t≥0

]
(ξ) = iθ

∫ ∞

0

s1/α−1

α
e−iθ−1s1/αξI−Biαθs ds .

By Bernstein’s Theorem 3.5 there exists a measure µ on (0,∞) such that:

s1/α−1

α
e−s1/α =

∫ ∞

0
e−us dµ(u) .

Plugging s⇝ iα(θ−1)ξαs, we obtain

iθ
s1/α−1

α
e−iθ−1s1/αξ = i1−α+αθξα−1

∫ ∞

0
e−uiα(θ−1)ξαs dµ(u) .

The last step may be justified by using the fact that Re iα(θ−1) > 0 for α ∈ [1, 2). Proceeding
with the computation above, we find

F
[
e−Btα1t≥0

]
(ξ) = i1−α+αθξα−1

∫ ∞

0

∫ ∞

0
e−uiα(θ−1)ξαsI−iαθBs ds dµ(u).

Now, we can take the integral in s and obtain

F
[
e−Btα1t≥0

]
(ξ) = ξα−1

∫ ∞

0

(
ui−1ξαI + iα−1B

)−1
dµ(u)

for ξ ≥ 0. Similarly,

F
[
e−B⊤(−t)α1t<0

]
(ξ) = ξα−1

∫ ∞

0

(
ui−1ξαI + iα−1B

)−1,∗
dµ(u) .

Combining the last two formulas together, we arrive at

F [f(t)] (ξ) = ξαθ
∫ ∞

0

(
ui−1ξαI + iα−1B

)−1
[
iα−1B + i1−αB⊤

] (
ui−1ξαI + iα−1B

)−1,∗
dµ(u) .

Note that (
ui−1ξαI + iα−1B

)−1
[
iα−1B + i1−αB⊤

] (
ui−1ξαI + iα−1B

)−1,∗
⊵ 0
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if and only if
iα−1B + i1−αB⊤ ⊵ 0,

which we have already shown to be true.

If B̃ ⊵ 0, but not necessarily B̃ ▷ 0, let Bε := B + εI for ε > 0 and remark that B̃ε ▷ 0. By the
above, we have that

fε(t) := exp
(
−|t|α

[
B+

ε + B−
ε sign(t)

])
is positive definite for each ε > 0. Letting ε ↓ 0, we find that f is also positive definite.

Proof of Theorem 3.3 in the case α = 2. In this case (3.4) yields −iB− ⊵ 0. By conjugation we
also obtain iB− ⊵ 0. Therefore, z∗(iB−)z = 0 for all z ∈ Cd. Since iB− is Hermitian, we can
conclude that B− = 0, therefore, B = B+ is Hermitian, in particular, it is normal, and the
positive definiteness of f follows from Theorem 3.1.

3.4.4 Lifting the diagonalizability and strict positive definiteness assump-
tions

Proof of Theorem 3.3 in the non-diagonalizable case. If B̃ ▷ 0, but B is not diagonalizable, then
there exist diagonalizable matrices Bn converging to B as n → ∞ such that the eigenvalues λ
of Bn satisfy the strict inequality

| Imλ | < Reλ ·
∣∣∣tan

(πα
2

)∣∣∣ . (3.15)

Hence,

e−Bn|t|α =

∫ ∞

0
e−uB

1/α
n |t| dµα(u),

which implies (3.12) by passing to a limit as n → ∞. Having deduced (3.12), we can continue
the proof the same way as if B were diagonalizable.

Proof of Theorem 3.3 in the case when the condition B̃ ⊵ 0 is non-strict. Take ε > 0 and let
Bε := (B1/α + εI)α. The eigenvalues of Bε satisfy the strict inequality (3.15), and therefore
gε(t) := exp (−|t|α [B+

ε + B−
ε sign(t)]) is positive definite if and only if B1/α

ε + B
1/α,⊤
ε ⊵ 0.

If B1/α + B1/α,⊤ ⊵ 0, then for all ε > 0 B
1/α
ε + B

1/α,⊤
ε ⊵ 0 and gε(t) ⪰ 0. Letting ε ↓ 0, we

obtain f(t) ⪰ 0 as desired.

If B1/α+B1/α,⊤⊵0 does not hold, then for all sufficiently small ε > 0 (B+εI)1/α+(B+εI)1/α,⊤⊵0
also does not hold, but B̃ε ▷ 0, therefore, fε is not positive definite, but then f is not positive
definite, because otherwise fε would be positive definite as a product of a positive definite
matrix-valued function f and a scalar positive definite function exp (−ε|t|α).

3.5 Appendix

3.5.1 Contour rotation in the proof of case α ∈ (1, 2]

Proof of (3.14). Assume that Re iαθλ > 0 and ξ ≥ 0. By Cauchy theorem applied to the
following contour γ
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Re z

Im z

0
γε

γR

Closed contour γ and two its circular arcs γε and γR.
The angle at the origin equals arg iθ = πθ/2.

we have that for 0 < ε < R holds ∮
γ
eitξ−λtα dt = 0,

implying ∫ R

ε
eitξ−λtα dt =

∫ iθR

iθε
eitξ−λtα dt−

[∫
γε

+

∫
γR

]
eitξ−λtα dt .

Since the integral over γε clearly tends to zero as ε → 0, and the function under the integral is
exponentially small on γR, we have

lim
R→∞

∫
γR

eitξ−λtα dt = 0.

By changing the variable t⇝ iθt, we obtain∫ ∞

0
eitξ−λtα dt =

∫
iθR+

eitξ−λtα dt = iθ
∫ ∞

0
e−iθ−1tξ−iαθλtα dt

establishing the proof.
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Chapter 4

Extremes of locally-homogenous
vector-valued Gaussian processes

Contour plot of a locally homogenous covariance function.

In this chapter, we study the asymptotical behaviour of high exceedence probabilities for centered
continuous Rn-valued Gaussian random field X with covariance matrix satisfying

Σ −R(t + s, t) ∼
n∑

l=1

Bl(t) |sl|αl as s ↓ 0.

Such processes occur naturally as time transformations of homogenous random fields, and we
present two asymptotic results of this nature as applications of our findings. The technical
novelty of our proof consists in showing that the Slepian-Gordon inequality technique, essential in
the univariate case, can also be successfully applied in the multivariate setup. This is noteworthy
because this technique was previously believed to be inaccessible in this particular context.

Pavel Ievlev, Extremes of locally-homogenous vector-valued Gaussian processes, Extremes 27
(2024), no. 2, 219–245. MR4744268
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4.1 Introduction

Despite the fact that the Gaussian extremes have been an active research area since at least
the 60s, up until recently little has been known about exact asymptotics of high exceedance
probabilities of Gaussian processes in the multivariate case. A deep contribution [1] has paved
a way towards different problems of the following kind:

P {∃ t ∈ [0, T ] : X(t) > ub} as u → ∞

for b ∈ Rd \ (−∞, 0]d and X being a continuous Gaussian process. Here “>” denotes the compo-
nentwise (Hadamard) comparison. As it turns out, these problems are much more challenging
than the univariate ones due to the lack of several techniques which are crucial for the univariate
case. The reader can find the detailed account of this shortage in the introduction to the afore-
mentioned paper. Among these lacking techniques, the authors name the Slepian inequality and
mention that its extension in the form of Gordon inequality is thought to be inapplicable if the
compontents of X are not independent (see [2] for the i.i.d. case).

In this contribution, we aim to achieve two goals. First, we extend [1, Theorem 2.1] on station-
ary processes to a certain class of homogenous Gaussian random fields defined on [0, T ]n, see
Theorem 4.1. Second, we apply this result to the study of locally-homogenous Gaussian random
fields. The corresponding result is presented in Theorem 4.2. The crucial step of the second
part involves constructing two homogenous processes which stochastically dominate X on short
intervals from above and from below. This is done by showing that a certain matrix-valued
function is positive definite and subsequently applying the Gordon inequality.

As an application of our findings, we present asymptotic formulas for the time-transformed
operator fractional Ornstein-Uhlenbeck process Y defined by the covariance matrix function

R2 ∋ (t, s) 7→ exp
(
− |φ(t) − φ(s)|H

)
,

with H a symmetric matrix with eigenvalues from (0, 1] and φ a strictly monotone continuously
differentiable function. By Proposition 4.1,

P {∃Y (t) > ub} ∼ c u1/hP {Y (0) > ub} ,

where h is the lowest eigenvalue of H and c is given in the form of an integral of Pickands-type
constants over [0, T ]. This result extends [1, Proposition 3.1]. Another application concerns a
class of continuous Gaussian processes associated to the following matrix-valued function:

R2 ∋ (t, s) 7→ exp
(
− |t− s|α

[
B+ + B− sign(t− s)

])
,

where B± = (B ±B⊤)/2 are symmetric and antisymmetric parts of a real d× d matrix B and
α ∈ (0, 2]. In an upcoming paper [3] we found the necessary and sufficient conditions on the
pair (α,B) under which this function is positive definite (see Lemma 4.3) and thus generates a
Gaussian process. Here we present an asymptotic result on the time-transformed version of this
process, see Proposition 4.2.

The notion of locally stationary process was introduced by Berman in [4] and its extremes
were extensively studied afterwards in the papers by Hüsler [5], Piterbarg [6], Chan and Lai [7]
and many others. See also [8, 9, 10] for more recent contributions. Its multivariate counterpart,
however, has not been considered so far due to the technical issues. The technique of [1] based on
the uniform version of local Pickands lemma may in principle be applied to this class of processes,
but it would require much stronger assumptions than those we impose in this contribution. Our
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result, presented in Theorem 4.2, should appear natural (if not obvious) for the specialist, but
it still requires a rigorous proof, which involves imposing the right assumptions on the field X.

The applicability of Gordon inequality in this context allows to significantly simplify the study
of classical multivariate Gaussian extremes. In particular, the technical issue of uniformity in
the single and double sums may be resolved by passing to a stationary dominating process.
Therefore, besides the results here, we establish a simpler methodology compared to [1] for
dealing with non-stationary Gaussian random fields.

We want to point out that one possible direction in which our results can be extended is the
family of α(t)-locally stationary Gaussian random fields, see [11].

Brief organization of the paper. Main results are presented in Section 4.2 with proofs
relegated to Section 4.5. The applications are presented in the Section 4.3. Section 4.4 contains
auxiliary results and technical lemmas. Appendix contains several known results taken from [1]
and reproduced here for reader’s convenience in the adapted form.

4.2 Main results

Before proceeding to the theorems, let us introduce some relevant notation.

Vectors. Throughout the paper points of Rd are written in bold letters (values of multivariate
processes), while points of [0, T ]n ⊂ Rn (points of their domain) are written in the regular font.
This does not lead to any confusion since their meaning can always be understood from the
context, but allows to avoid visual clutter. All operations on vectors in both spaсes, unless
specified otherwise, are performed component-wise. For example, if t and s belong to Rn, then
ts denotes the vector (tisi)i=1,...,n. Similarly for t/s, et, ⌊t⌋ and so on denoting vectors with
components ti/si, eti and ⌊ti⌋ correspondingly. We write t ≥ s if ti ≥ si for all their coordinates.
By abuse of notation, we write 1 = (1, . . . , 1) ∈ Rn and 0 = (0, . . . , 0) ∈ Rn. If s > t, then [t, s]
denotes the box {u : ui ∈ [ti, si]}.

Matrices. If A = (Aij)i,j=1,...,d is a d × d matrix and I, J ⊂ {1, . . . , d} are two index sets, we
write AIJ for the submatrix (Aij)i∈I, j∈J . If I = J , we occasionally write AI instead of AII . ∥A∥
denotes any fixed norm in the space of d×d matrices. Our formulas do not depend on the choice
of the norm. For w ∈ Rd, diag(w) stands for the diagonal matrix with entries w1, w2, . . . , wd on
the main diagonal. The notation A⊵ 0 means that A is positive definite and A ▷ 0 means that
A is strictly positive definite. If A is a real matrix, denote its symmetric and anti-symmetric
parts by A± := (A±A⊤)/2.

Other notation. We use lower case constants c1, c2, . . . to denote generic constants used in
the proofs, whose exact values are not important and can be changed from line to line. The
labeling of the constants starts anew in every proof. Similarly, ϵ1, ϵ2, . . . denote error terms,
that is, functions of various variables which are small in some specific sense, always described
near the point where they are introduced. Their labeling also starts anew in every proof.

The next two subsections present our results on homogenous and locally homogenous fields.

4.2.1 Homogenous case

Let X(t), t ∈ [0, T ]n be a centered homogenous and continuous Gaussian random field. Denote
its covariance and variance matrices by

R(t, s) := E
{
X(t)X⊤(s)

}
and Σ := R(0, 0).
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Homogenity means that for each t and s in [0, T ]n

E
{
X(t)X⊤(s)

}
= E

{
X(t− s)X⊤(0)

}
= R(t− s, 0),

therefore we set in the following R(t) := R(t, 0). It follows that R(−t) = R⊤(t). The matrix
Σ − R(t) is positive definite, but not necessarily symmetric. Let b ∈ Rd \ (−∞, 0]d and denote
by b̃ and I the unique solution of ΠΣ(b) and its I index set, see Lemma 2.5 for details. Set
w := Σ−1 b̃.

In this section we impose the following assumptions:

A1 ΣII −RII(t) is strictly positive definite for every t ∈ (0, T ]

A2 There exist a collection B := (Bl)l=1,...,n of real d× d matrices and a collection of numbers
α := (αl)l=1,...,n ∈ (0, 2]n such that

Σ −R(t) =
n∑

l=1

Bl |tl|αl + o

(
n∑

l=1

|tl|αl

)
as t ↓ 0, (A2.1)

w⊤Bl w > 0 for all l = 1, . . . , n. (A2.2)

Remark 4.1. It follows from (A2.1) that

Σ −R(t) ∼
n∑

l=1

[
Bl |tl|αl 1tl≥0 + Bl |tl|αl 1tl<0

]
as t → 0 and Bl’s satisfy

B̃l := B+
l cos

(παl

2

)
− iB−

l sin
(παl

2

)
⊵ 0, where B± :=

B ±B⊤

2
. (4.1)

From this follows that B+
l ⊵ 0.

Theorem 4.1. If X is a centered homogenous and continuous Gaussian random field satisfying
Assumptions A1 and A2, then

P {∃ t ∈ [0, T ]n : X(t) > ub} ∼ TnHα,B,w

n∏
l=1

u2/αl P {X(0) > ub} ,

where the constant Hα,B is given by

Hα,B,w := lim
Λ→∞

1

Λn

∫
Rd

e1
⊤x

× P

{
∃ t ∈ [0,Λ]n :

n∑
l=1

diag(w)
[
Yl(tl) − Sαl,Bl

(tl)w
]
> x

}
dx ∈ (0,∞). (4.2)

Here Yl is a continuous Gaussian process associated to the covariance function

Rαl,Bl
(tl, sl) := Sαl,Bl

(tl)+Sαl,Bl
(−sl)−Sαl,Bl

(tl−sl), Sαl,Bl
(tl) := |tl|αl

[
B1tl≥0+B⊤1tl<0

]
.
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4.2.2 Locally homogenous case

In this section X(t), t ∈ [0, T ]n is a centered continuous Gaussian random field with covariance
matrix

R(t, s) := E
{
X(t)X⊤(s)

}
and variance matrix Σ satisfying R(t, t) = R(0, 0) =: Σ. We impose the following assumptions:

B1 ΣII −RII(t) is strictly positive definite for every t ∈ (0, T ]

B2 There exist a collection B(t) := (Bl(t))l=1,...,n of continuous real d×d matrix-valued functions
and a collection of numbers α := (αl)l=1,...,n ∈ (0, 2]n such that

Σ−R(t+s, t) =

n∑
l=1

[
Bl(t) |sl|αl1sl≥0+B⊤

l (t) |sl|αl 1sl<0

]
+o

(
n∑

l=1

|sl|αl

)
as t → +0, (B2.1)

where small-o is uniform in t ∈ [0, T ]n and

B̃l(t) := B+
l (t) cos

(παl

2

)
− iB−

l (t) sin
(παl

2

)
▷ 0 for all t ∈ [0, T ]n. (B2.2)

Remark 4.2. From (B2.2) follows that w⊤Bl(t)w > 0 for all t ∈ [0, T ]n.

Theorem 4.2. If X is a centered and continuous Gaussian random field satisfying Assump-
tions B1 and B2, then

P {∃ t ∈ [0, T ]n : X(t) > ub} ∼
∫
[0,T ]n

Hα,B(t),w dt

n∏
l=1

u2/αl P {X(0) > ub} ,

where the constant Hα,B is given by (4.2).

4.3 Examples

4.3.1 Time-transformed operator fractional Ornstein-Ulhenbeck process

Let H be a symmetric matrix with all eigenvalues h1, . . . , hd belonging to (0, 1] and consider a
stationary a.s. continuous Rd-valued Gaussian process X(t), t ≥ 0 with cmf

R(t, s) = exp
(
− |t− s|2H

)
, (4.3)

where tH = exp(H ln t) for t > 0. This process is known in the literature as the operator
fractional Ornstein-Uhlenbeck process. In this section we consider its time-transformed version.
Specifically, let φ be a continuously differentiable strictly monotone function. Define Y (t) :=
X(φ(t)). Let us show that this process is locally stationary in the sense defined above. Since H
is symmetric, there exists an orthogonal matrix Q such that H = Q diag(h1, . . . , hd)Q⊤. Hence,

R(t + s, t) = I −QĨQ⊤ |φ(t + s) − φ(t)|2h + O
(
|φ(t + s) − φ(t)|2

)
as s → 0,

with h := mini=1,...,d hi and [Ĩ ]ij := 1i=j andh=hi
. Since φ is differentiable, we have

R(t + s, t) = I −QĨQ⊤|φ′(t)|2h|s|2h + O
(
|s|4h

)
as s → 0.

Then (B2) holds with B(t) := QĨQ⊤ |φ′(t)|2h and Σ = I. Note that |φ′(t)| > 0 since φ is strictly
monotone. By Theorem 4.2 we have the following result:
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Proposition 4.1. Let Y (t) = X(φ(t)), t ∈ [0, T ], where φ is a continuously differentiable
strictly monotone function and X(t), t ∈ R is an operator fO-U process associated to the covari-
ance (4.3) with a symmetric matrix H whose eigenvalues belong to (0, 1]. Let b̃j = max{bj , 0}
for j = 1, . . . , d. If b̃⊤QĨQ⊤b̃ > 0, then

P {∃ t ∈ [0, T ] : Y (t) > ub} ∼ u1/h
∫ T

0
H

2h,QĨQ⊤|φ′(t)|2h,w dt P {X(φ(0)) > ub} .

4.3.2 A Gaussian process with α-homogenous log-covariance

In Chapter 3 show the following result:

Theorem 4.3. Let B be a real d× d matrix. If a matrix-valued function R defined by

R(t, s) = exp
(
−|t− s|α

[
B+ + B− sign(t− s)

])
, t, s ∈ R, (4.4)

is positive-definite, then the condition (4.1) is satisfied. If, on the other hand, the condition (4.1)
is satisfied. Then

• If α ∈ (0, 1), then R is positive-definite if and only if B satisfies

B1/α + B1/α,⊤ ⊵ 0.

• If α ∈ [1, 2], then R is positive-definite.

Using the above result, define X(t), t ∈ R a stationary continuous Gaussian process associated
to this covariance and let φ be a strictly increasing continuously differentiable function. Define
Y (t) := X(φ(t)). The covariance of Y satisfies

RY (t + s, t) ∼ I −
[
B+ + B− sign(s)

] ∣∣φ′(t)
∣∣α |s|α + O

(
|s|2α

)
as s → 0,

where we used the fact that sign(φ(t + s) − φ(t)) = sign(s) since φ is increasing. Hence, the
assumption B2.1 is satisfied with B(t) = B |φ′(t)|α. The validity of B2.2 follows from the fact
that |φ′(t)| > 0 and our assumption on B. By Theorem 4.2, we have the following result:

Proposition 4.2. Let Y (t) = X(φ(t)), t ∈ [0, T ], where φ is a strictly increasing continuously
differentiable function and X is a process associated to the covariance (4.4), where B and α are
such that this function is positive definite. Then

P {∃ t ∈ [0, T ] : Y (t) > ub} ∼ u2/α
∫ T

0
Hα,B|φ′(t)|α,w dt P {X(φ(0)) > ub}

as u → ∞.

4.4 Auxiliary results

4.4.1 Lemma on positive definiteness

Lemma 4.1. Let B be a real d× d matrix satisfying

B̃ = B+ sin
(πα

2

)
− iB− cos

(πα
2

)
▷ 0. (4.5)
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Then there exists a collection of complex numbers {λk}k=1,...,d satisfying

Reλk = 1, | Imλk | <
∣∣∣ tan

(πα
2

)∣∣∣ (4.6)

and a collection of strictly positive definite Hermitian matrices {Vk}k=1,...,d of rank one such that

B =
d∑

k=1

λkVk. (4.7)

Proof. Note that B can be represented as follows:

B = B+ + iB′
−, B′

− := −iB−, B± :=
B ±B⊤

2
.

Here B+ is symmetric and strictly positive definite by (4.5) and B′
− is Hermitian. Hence, there

exists an invertible real matrix A such that B+ = AA⊤. Note that for each unitaty matrix Q
holds

QA−1B+A
−⊤Q∗ = QQ∗ = I.

Since B′
− is Hermitian, so is A−1B′

−A
−⊤ and therefore there exists a unitary matrix Q and a

real diagonal matrix D such that

A−1B′
−A

−⊤ = Q∗DQ.

Denote V := AQ∗. Therefore, we have the following representations of B+

V V ∗ = AQ∗QA⊤ = AA⊤ = B+ (4.8)

and B′
−

V DV ∗ = AQ∗DQA⊤ = AA−1B′
−A

−⊤A⊤ = B′
−. (4.9)

Hence, for B we have

B = B+ + iB′
− = V V ∗ + iV DV ∗ = V

[
I + iD

]
V ∗.

Set next
λk := 1 + iDkk, Vk := V Dk V

∗, (4.10)

where [Dk]ml = δkmδkl is the diagonal matrix with 1 at k-th place. Clearly, Vk’s are Hermitian,
positive definite, of rank one and (4.7) is satisfied. It remains to show that the inequality (4.6)
is also satisfied. To this end, use (4.8) and (4.9) to rewrite B̃ as

B̃ = V
[
I cos

(πα
2

)
− iD sin

(πα
2

)]
V ∗ ▷ 0.

Therefore, we have

I cos
(πα

2

)
− iD sin

(πα
2

)
▷ 0,

which implies (4.6).

Lemma 4.2. Under the conditions of Lemma 4.1, the functions given by

Eα,B,k(t) := exp (−dλkVk|t|α) 1t≥0 + exp
(
−d λk Vk|t|α

)
1t<0
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with λk, Vk and α from Lemma 4.1 are all positive definite complex matrix-valued functions. Let
Σ = AA⊤ be a strictly positive definite matrix and define

Eα,B(t) :=
1

2d
A

d∑
k=1

[
Eα,A−1BA−⊤,k(t) + Eα,A−1BA−⊤,k(t)

]
A⊤.

Then Eα,B(t) is positive definite real matrix-valued function satisfying

Eα,B(t) = Σ −B|t|α1t≥0 −B⊤|t|α1t<0 + o (|t|α) as t → 0.

Proof. Since Vk = V ∗Dk V by (4.10), there exists µk > 0 and a unitary matrix U such that
Vk = µk U

∗Dk U . Hence,

exp
(
−d
[
1 + i Imλk sign(t)

]
Vk|t|α

)
= U∗ exp

(
−dµk

[
1 + i Imλk sign(t)]Dk |t|α

)
U.

Positive definiteness of this function is therefore equivalent to that of a scalar-valued function

exp
(
−dµk

[
1 + i Imλk sign(t)

]
|t|α
)
,

which follows from (4.6). The second claim follows from (4.7) and the fact that

B̃ ▷ 0 =⇒ ˜A−1BA−⊤ = A−1B̃A−⊤ ▷ 0

by a direct computation.

4.4.2 Double sum bound

Lemma 4.3 (Double sum bound). If X(t), t ∈ [0, T ]n is a centered continuous Gaussian field
satifying Assumption A2, then there exist positive constants C and ε such that for every k ∈
Zd \ {0} with 1 < |kl| ≤ Nu(ε) for all l and Λ > 0 holds

Pb(k,Λ)

P {X(0) > ub}
≤ CΛ#{l : kl=0}

∏
l : kl ̸=0

(|kl| − 1)−2 exp

(
−1

4
w⊤Bl w Λαl (|kl| − 1)αl

)

Remark 4.3. Note that the conditions of the lemma demand that there be no l’s such that
kl = ±1. This is not a coincidence: the adjacent double events are to be estimated differently.
See the proof of Theorem 4.1 for details.

Proof. Without loss of generality assume that I = {1, . . . , n}. Then

Pb(k,Λ) ≤ P

{
∃ (t, s) ∈ Λu−2/α[k, k + 1] × [0, 1] :

1

2

[
X(t) + X(s)

]
> ub

}

= u−d

∫
Rd

P
{
∃ (t, s) ∈ [0,Λ]2n : χu,k,x(t, s) > x

}
φu,k

(
ub− x

u

)
dx,

(4.11)

where
χu,k,x(t, s) := u

(
Xu,k(t, s) − ub

∣∣∣Xu,k(0, 0) = ub− x

u

)
+ x

with
Xu,k(t, s) :=

1

2

[
X
(

Λu−2/αk + u−2/αt
)

+ X
(
u−2/αs

) ]
94



Extremes of locally-homogenous vector-valued Gaussian processes

and φu,k is the pdf of Xu,k(0, 0)
d
= N(0,Σu,k), where

Σu,k := E
{
Xu,k(0, 0)X⊤

u,k(0, 0)
}

=
1

4

[
2Σ + R

(
Λu−2/αk

)
+ R

(
−Λu−2/αk

) ]
= Σ − u−2

n∑
l=1

[
Bl + B⊤

l

]
Λαlkαl

l + ϵ
(
u−2/αΛk

)
.

(4.12)

First, bound φu,k as follows:

φu,k

(
ub− x

u

)
≤ φ(ub) exp

(
u2

2
b⊤
[
Σ−1 − Σ−1

u,k

]
b

)
exp

(
b⊤Σ−1

u,kx
)
,

where φ is the pdf of N(0,Σ). Plugging this into (4.11) and noting that u−d φ(ub) =
P {X(0) > ub}, we obtain the following bound:

Pb(k,Λ)

P {X(0) > ub}
≤ exp

(
u2

2
b⊤
[
Σ−1 − Σ−1

u,k

]
b

)

×
∫

Rd

exp
(
b⊤Σ−1

u,kx
)

P
{
∃ (t, s) ∈ [0,Λ]2n : χu,k,x(t, s) > x

}
dx . (4.13)

At this point we split the proof into three parts: estimation of the integral, estimation of the
exponent in front of it and their comparison.

The exponent in front of the integral. By (4.12), we have

Σ−1 − Σ−1
u,k = −u−2

n∑
l=1

Σ−1
[
Bl + B⊤

l

]
Σ−1Λαl |kl|αl + ϵ1

(
u−2/αΛk

)
. (4.14)

Therefore,

u2

2
b⊤
[
Σ−1 − Σ−1

u,k

]
b = −

n∑
l=1

w⊤Bl w Λαl |kl|αl + u2ϵ2

(
u−2/αΛk

)
. (4.15)

By our assumptions,
sup

−Nu(ε)≤k≤Nu(ε)
u2
∣∣∣ϵ2 (u−2/αΛk

)∣∣∣ −−−→
u→∞

0.

The integral. First note that

exp
(
b⊤Σ−1

u,kx
)

= exp
(

(w + ϵ3(u
−2/αΛk))⊤x

)
where the ϵ3 term tends to zero uniformly in k. We will drop this term from now on to simplify
the notation. To bound the remaining integral we will use Lemma 2.10, which gives∫

Rd

ew
⊤x P

{
∃ (t, s) ∈ [0,Λ]2n : χu,k,x(t, s) > ub

}
dx ≤ c1 exp

(
c2(G + σ2)

)
(4.16)

with some positive constants c1 and c2. Here G ∈ R and σ2 > 0 are numbers (depending on k
and u) such that

sup
F⊂{1,...,d}

sup
(t,s)∈[0,Λ]2n

w⊤
F E {χu,k,x,F (t, s)} ≤ G + ε

d∑
j=1

|xj | (4.17)
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and
sup

F⊂{1,...,d}
sup

(t,s)∈[0,Λ]2n
Var

{
w⊤

F χu,k,x,F (t, s)
}
≤ σ2

To apply this lemma we need to find such numbers.

Finding G. By the formulas on conditional Gaussian distribution, we have

E {χu,k,x(t, s)} = u
[
Σu,k −Ru,k(t, s, 0, 0)

]
Σ−1
u,k

[
ub− x

u

]
, (4.18)

where Ru,k(t, s, t′, s′) is the covariance of χu,k,x(t, s). Note that this covariance does not depend
on x. The x-term can clearly be bounded by

∥∥∥[Σu,k −Ru,k(t, s, 0, 0)
]
Σ−1
u,k x

∥∥∥ ≤ ε

d∑
j=1

|xj |d.

Let us bound the b-contribution. A direct computation gives

Σu,k −Ru,k(t, s, 0, 0) ∼ 1

4u2

n∑
l=1

[
Sαl,Bl

(sl) + Sαl,Bl
(tl)

+ Sαl,Bl
(Λkl + tl) + Sαl,Bl

(sl − Λkl) − Sαl,Bl
(−Λkl) − Sαl,Bl

(Λkl)
]

(4.19)

uniformly in k ∈ [−Nu(ε), Nu(ε)]. By (4.14)

u2w⊤
F

[[
Σu,k −Ru,k(t, s, 0, 0)

]
Σ−1
u,k b

]
F
∼ u2w⊤

F

[[
Σu,k −Ru,k(t, s, 0, 0)

]
w
]
F

∼ 1

4

n∑
l=1

[A1,l + A2,l + A3,l]

uniformly in k ∈ [−Nu(ε), Nu(ε)], where

A1,l := w⊤
F

[[
Sαl,Bl

(sl) + Sαl,Bl
(tl)
]
w
]
F
,

A2,l := w⊤
F

[[
Sαl,Bl

(Λkl + tl) − Sαl,Bl
(Λkl)

]
w
]
F
,

A3,l := w⊤
F

[[
Sαl,Bl

(sl − Λkl) − Sαl,Bl
(−Λkl)

]
w
]
F
.

The first can be bounded as follows:

|A1,l| ≤ |w|2
[
∥Sαl,Bl

(sl)∥ + ∥Sαl,Bl
(tl)∥

]
≤ 2Λαl |w|2 ∥Bl∥ .

A2,l and A3,l can be bounded for kl ̸= 0 similarly as follows:

|A2,l| ≤ |w|2 ∥B∥
[
|Λkl + tl|αl − |Λkl|αl

]
≤ c2 Λαl |kl|αl−1.

Therefore, the inequality (4.17) is satisfied with

G = c2

n∑
l=1

Λαl(1 + |kl|αl−11kl ̸=0). (4.20)
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Finding σ2. We have

Var
{
w⊤

Fχu,k,x,F (t, s)
}

=
∑

j′, j∈F
wjwj′ Cov(χu,k,x,j(t, s), χu,k,x,j′(t, s))

≤ c3
∑
j,j′

[
Ru,k,x(t, s, t, s)

]
j,j′

,

where R is the covariance of χu,k,x,F :

Ru,k,x(t, s, t′, s′) := E
{
χu,k,x(t, s)χ⊤

u,k,x(t′, s′)
}

= Ru,k(t, s, t′, s′) −Ru,k(t, s, 0, 0)Σ−1
u,kRu,k(0, 0, t′, s′)

∼ 1

4

n∑
l=1

[
A1,l + A2,l + A3,l + A4,l + A5,l + A6,l

]
,

where
A1,l := Sαl,Bl

(tl) + Sαl,Bl
(sl) + Sαl,Bl

(−t′l) + Sαl,Bl
(−s′l),

A2,l := Sαl,Bl
(sl − Λkl) − Sαl,Bl

(−Λkl),

A3,l := Sαl,Bl
(tl + Λkl) − Sαl,Bl

(Λkl),

A4,l := −Sαl,Bl
(s− s′) − Sαl,Bl

(t− t′),

A5,l := Sαl,Bl
(−Λkl − t′l) − Sαl,Bl

(−Λkl − t′l + sl),

A6,l := Sαl,Bl
(Λkl − s′l) − Sαl,Bl

(Λkl − s′l + tl).

Similarly to how we bounded differences of this form above, we obtain

∥A1,l∥ , ∥A4,l∥ ≤ c4Λ
αl , ∥A2,l∥ , ∥A3,l∥ , ∥A5,l∥ , ∥A6,l∥ ≤ c5Λ

αl |kl|αl−1.

Hence, the inequality (4.17) is satisfied with

σ2 = c6

n∑
l=1

Λαl
(
1 + |kl|αl−11kl ̸=0

)
. (4.21)

Proceeding with the integral. Combining (4.20) and (4.21) with (4.16), we find∫
Rd

ew
⊤x P

{
∃ (t, s) ∈ [0,Λ]2n : χu,k,x(t, s) > ub

}
dx ≤ c6 exp

(
c7

n∑
l=1

Λαl
(
1 + |kl|αl−11kl ̸=0

))
.

By (4.15) and (4.13), we have

Pb(k,Λ)

P {X(0) > ub}
≤ c8 exp

(
−

n∑
l=1

Λαl

[
w⊤Bl w

2
|kl|αl − c7

(
1 + |kl|αl−11kl ̸=0

)])
. (4.22)

If |kl| is large enough, we have

w⊤Bl w

2
|kl|αl − c7 (1 + |kl|αl) ≥ w⊤Bl w

4
.
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Lifting the assumption that |kl| is large. Let K be such that for |kl| ≥ K holds

Pb(k,Λ)

P {X(0) > ub}
≤ c8 exp

(
−1

4

n∑
l=1

w⊤Bl w Λαl |kl|αl

)
.

It suffices to consider the case when some of kl’s satisfy 1 < |kl| < K. Assume for simplicity
that there is exactly one such l that |kl| < K, take Λ′ > 0 such that Λ′ < Λ and bound Pb as
follows:

Pb(k,Λ) ≤
∑

0≤ pl, ql ≤⌈Λ/Λ′⌉

P

∃ t ∈ Λ′u−2/α[Λk/Λ′ + ql1l,Λk/Λ′ + ql1l + 1] : X(t) > ub

∃ s ∈ Λ′u−2/α[pl1l, pl1l + 1] : X(s) > ub


=

∑
0≤ pl, ql ≤⌈Λ/Λ′⌉

Pb(Λk/Λ′ + (ql − pl)1l,Λ
′).

(4.23)
Here 1l ∈ Zd such that [1l]l′ = δl,l′ . Choose Λ′ := Λ(|kl| − 1)/K. Then

k′l := Λkl/Λ′ + ql − pl ≥ Λkl/Λ′ − Λ/Λ′ = Λ(kl − 1)/Λ′ ≥ K

and therefore

Pb(k′,Λ′)

P {X(0) > ub}
≤ c8 exp

(
−1

4

n∑
l=1

w⊤Bl w Λ′αl |k′l|αl

)

= c8 exp

(
−1

4

n∑
l=1

w⊤Bl w Λαl(|kl| − 1)αl

)
.

(4.24)

It remains to note that the number of terms in the sum (4.23) is at most⌈
Λ/Λ′⌉2 ≤ 2K2/(|kl| − 1)2.

Lifting the assumption that all kl’s are non-zero. By (4.22) and (4.24)

Pb(k,Λ)

P {X(0) > ub}
≤ c8

∏
l : kl ̸=0

exp

(
−1

4
w⊤Bl w Λαl (|kl| − 1)αl

) ∏
l : kl=0

exp (c7Λ
αl) . (4.25)

Similarly to the previous point of the proof, take Λ′ ∈ (0,Λ) and assume for simplicity that
there is only one l such that kl = 0. Note that

Pb(k,Λ) ≤
∑

0≤ p≤⌈Λ/Λ′⌉

P



∃ tj ∈ Λu−2/αj [kj , kj + 1], j ̸= l

∃ tl ∈ Λ′u−2/αl [p, p + 1]
: X(t) > ub

∃ sj ∈ Λu−2/αj [0, 0 + 1], j ̸= l

∃ sl ∈ Λ′u−2/αl [p, p + 1]
: X(s) > ub


(4.26)

A similar proof to what we used above shows that each term of this sum is at most

c8
∏
l′ ̸=l

exp

(
−1

4
w⊤Bl w Λαl (|kl| − 1)αl

)
exp

(
c7Λ

′αl
)

P {X(0) > ub} .

The number of terms in the sum (4.26) is at most ⌈Λ/Λ′⌉, hence

Pb(k,Λ)

P {X(0) > ub}
≤ c9Λ

∏
l ̸=l′

exp

(
−1

4
w⊤Bl w Λαl (|kl|αl − 1)αl

)
,

where c9 = 2c8 exp(c7Λ
′α′

)/Λ′. The general case when there is several l’s such that kl = 0 can
be addressed similarly.
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4.5 Proofs

4.5.1 Homogenous theorem

Proof of Theorem 4.1. We begin the proof by splitting [0, T ]n into pieces of Pickands scale

[0, T ]n = Λu−2/α
⋃

k≤Nu

[k, k + 1], where Nu(T ) :=

⌈
T

Λu−2/α

⌉
and using Bonferroni inequality to obtain

Σ′
1 − Σ2 ≤ P {∃ t ∈ [0, T ]n : X(t) > ub} ≤ Σ1,

where

Σ1 :=
∑

0≤ k≤Nu(T )

P
{
∃ t ∈ Λu−2/α[k, k + 1] : X(t) > ub

}
,

Σ2 :=
∑

0≤ k, j≤Nu(T )

k ̸= j

P

∃ t ∈ Λu−2/α[k, k + 1] : X(t) > ub

∃ s ∈ Λu−2/α[j, j + 1] : X(s) > ub

 .

and Σ′
1 is defined by the same formula as Σ1 but with N−1 instead of N in the upper summation

limit. At this point we split the proof into two parts. First, we will focus on finding the exact
asymptotics of the single sum Σ1 ∼ Σ′

1, and then demonstrate that the double sum Σ2 is
negligible with respect to Σ1.

Since X is homogenous, we can easily compute the single sum

Σ1 =

[
n∏

l=1

Nu,l(T )

]
P
{
∃ t ∈ Λu−2/α[0, 1]n : X(t) > ub

}
.

Applying local Pickands Lemmma 4.5, we obtain

Σ′
1 ∼ Σ1 ∼ Tn

[
n∏

l=1

u−2/αl

]
Hα,B,w([0,Λ]n)

Λn
P {X(0) > ub} .

Since E 7→ Hα,B,w(E) is subadditive, we have that the limit

Hα,B,w := lim
Λ→∞

Hα,B,w([0,Λ]n)

Λn

exists and is finite. We will show that it is also positive after dealing with the double sum.

Double sum. By stationarity we have that

Σ2 =
∑

0≤ k, j≤Nu(T )

k ̸= j

P

∃ t ∈ Λu−2/α[k − j, k − j + 1] : X(t) > ub

∃ s ∈ Λu−2/α[0, 1] : X(s) > ub

 .

Reindexing the sum by q = k − j, we obtain

Σ2 =
n∏

l=1

Nu,l(T )
∑

−Nu(T )≤ q≤Nu(T )

q ̸=0

P

∃ t ∈ Λu−2/α[q, q + 1] : X(t) > ub

∃ s ∈ Λu−2/α[0, 1] : X(s) > ub

 .
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Denote the double events’ probabilities by

Pb(q,Λ) := P

∃ t ∈ Λu−2/α[q, q + 1] : X(t) > ub

∃ s ∈ Λu−2/α[0, 1] : X(s) > ub

 .

Take some ε ∈ (0, T ) and divide the sum in two parts:∑
0≤ q≤Nu

q ̸=0

Pb(q,Λ) =
∑

∃ l : |ql|>Nu,l(ε)

Pb(q,Λ) +
∑

−Nu(ε)≤ q≤Nu(ε)

Pb(q,Λ). (4.27)

Terms of the first sum can be bounded as follows:

Pb(q,Λ) ≤ P

{
∃ (t, s) ∈ Λu−2/α([q, q + 1] × [0, 1]) :

1

2
[X(t) + X(s)] > ub

}

≤ P

{
∃ (t, s) ∈ Λu−2/α([q, q + 1] × [0, 1]) :

1

2
[XI(t) + XI(s)] > ubI

}
.

Let Σ(t, s) denote the variance matrix of (X(t) + X(s))/2:

Σ(t, s) =
1

4

[
2Σ + R(t− s) + R(s− t)

]
.

In view of Assumption A1, the matrix (ΣII(t, s))−1) − (ΣII)−1 is strictly positive definite for
t ̸= s, which implies

τ := inf

{
inf

xI≥bI
x⊤
I (ΣII(t, s))−1xI

∣∣∣∣ (t, s) ∈ Λu−2/α([q, q + 1] × [0, 1])

}

≥ τ1 := inf

{
inf

xI≥bI
x⊤
I (ΣII(t, s))−1xI

∣∣∣∣ (t, s) ∈ [0, T ]n : |tl − sl| > ε

}
> τ0 := inf

xI≥bI
x⊤
I (ΣII)−1xI > 0.

Note that the condition ∃ l : |ql| > Nu(ε) allows us to separate δ(u, ε) := τ − τ0 from 0 by δ(ε) :=
τ1− τ0 > 0, which depends on ε, but does not depend on u. Since τ0 = b⊤I (ΣII)−1bI = b⊤Σ−1b,
we obtain by using the Piterbarg inequality (2.25) the following upper bound:

P

{
∃ (t, s) ∈ Λu−2/α([q, q + 1] × [0, 1]) :

1

2

[
X(t) + X(s)

]
> ub

}

≤ c1 u
2n/γ−1 mes

(
Λu−2/α([q, q + 1] × [0, 1])

)
exp

(
−u2τ

2

)

≤ c2 Λ2n uM exp

(
−u2

2

[
b⊤Σ−1b + δ(ε)

])
,

which is negligible with respect to P{X(0) > ub} as u → ∞. Summing these bounds, we obtain

lim sup
u→∞

∑
∃ l : |ql|>Nu(ε)

Pb(q,Λ)

n∏
l=1

u−2/αlP {X(0) > ub}
= 0.
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To bound the second sum in (4.27), we divide it further into∑
−Nu(ε)≤ q≤Nu(ε)

Pb(q,Λ) =
∑

−Nu(ε)≤ q≤Nu(ε)

∃ l : |ql|=1

Pb(q,Λ) +
∑

−Nu(ε)≤ q≤Nu(ε)

∀ l : |ql|̸=1

Pb(q,Λ) =: A1 + A2.

(4.28)
The probabilities of the second sum can be estimated by Lemma 4.3 as follows:

Pb(q,Λ)

P {X(0) > ub}
≤ cΛ#{l : kl=0}

∏
l : kl ̸=0

(|kl| − 1)−2 exp

(
−1

4
w⊤Bl w Λαl (|kl| − 1)αl

)

and therefore

lim
Λ→∞

lim sup
u→∞

A2

Hα,B,w([0,Λ]n)

n∏
l=1

u−2/αlP {X(0) > ub}

≤ c1 lim
Λ→∞

∑
l

Λ#{l : kl=0}−n exp

(
−1

8
w⊤Bl w Λαl

)
= 0.

Next, we show how to bound the first sum. Assume for simplicity that q is such that |ql| = 1
and |ql′ | ≠ 1 for all l′ ̸= l. We have

Pb(q,Λ) = P


∀ j ̸= l ∃ tj ∈ Λu−2/αj [qj , qj + 1]

∃ tl ∈ Λu−2/αl [1, 2]
: X(t) > ub

∃ s ∈ Λu−2/α[0, 1] : X(s) > ub



≤ P


∀ j ̸= l ∃ tj ∈ Λu−2/αj [qj , qj + 1]

∃ tl ∈ u−2/αl

[
Λ +

√
Λ, 2Λ +

√
Λ
] : X(t) > ub

∃ s ∈ Λu−2/α[0, 1] : X(s) > ub


+ P


∃ tj ∈ Λu−2/αj [qj , qj + 1] ∀ j ̸= l

∃ tl ∈ u−2/αl

[
Λ,Λ +

√
Λ
] : X(t) > ub

 =: A3 + A4.

The first probability on the right satisfies the conditions of Lemma 4.3, and therefore

A3

P {X(0) > ub}
≤ c1Λ

#{l : kl=0}
∏

l′ ̸=l, kl ̸=0

exp

(
−1

4
w⊤Bl w Λαl (|ql| − 1)αl

)

× exp

(
−1

4
w⊤Bl w Λαl/2

)
Therefore, we obtain

lim
Λ→∞

lim sup
u→∞

∑
l

A3

Hα,B,w([0,Λ]n)

n∏
l=1

u−2/αl P {X(0) > ub}
= 0.
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For A4, we have by Lemma 4.5

A4

P {X(0) > ub}
∼ Hα,B,w

(
[0,Λ] × . . .×

[
0,
√

Λ
]
× . . . [0,Λ]

)
Consequently, we have

lim
Λ→∞

lim sup
u→∞

∑
l

A4

TnHα,B,w ([0,Λ]n)
n∏

l=1

u−2/αl P {X(0) > ub}

= lim
Λ→∞

Hα,B,w

(
[0,Λ] × . . .×

[
0,
√

Λ
]
× . . . [0,Λ]

)
Hα,B,w ([0,Λ]n)

≤ lim
Λ→∞

Λ−1/2 = 0.

The general case of qI ∈ {±1} for I ⊂ {1, . . . , n} can be addressed similarly.

Positivity of the Pickands constant. To show that the constant is positive we can use the
following lower bound:

lim sup
u→∞

Hα,B,w ([0,Λ]n)

Λn
≥ lim inf

u→∞

P {∃ t ∈ [0, T ]nX(t) > ub}

Tn
n∏

l=1

u−2/αlP {X(0) > ub}

≥ lim inf
u→∞

P {∃ t ∈ [0, ε]nX(t) > ub}

Tn
n∏

l=1

u−2/αlP {X(0) > ub}
≥ lim inf

u→∞

Σ̃1 − Σ̃2

Tn
n∏

l=1

u−2/αlP {X(0) > ub}
, (4.29)

where Σ̃1 and Σ̃2 are the single and double sum with some Λ′ instead of Λ and without odd (in
all coordinates) intervals:

Σ̃1 :=
∑

0≤ k≤ Ñu(ε)

P
{
∃ t ∈ Λ′u−2/α[2k, 2k + 1] : X(t) > ub

}
,

Σ̃2 :=
∑

0≤ k, j≤ Ñu(ε)

k ̸= j

P

∃ t ∈ Λ′u−2/α[2k, 2k + 1] : X(t) > ub

∃ s ∈ Λu−2/α[2j, 2j + 1] : X(s) > ub


and Ñu(ε) =

⌊
ε/2Λ′u−2/α

⌋
. By the same reasoning as above,

lim inf
u→∞

Σ̃1
n∏

l=1

u−2/αlP {X(0) > ub}
=
(ε

2

)n Hα,B,w([0,Λ′])

Λ′n ,

and

lim sup
u→∞

Σ̃2
n∏

l=1

u−2/αlP {X(0) > ub}
≤ c

(ε
2

)n∑
l

Λ′#{l : kl=0}−n
∏
kl ̸=0

exp

(
−1

4
w⊤Bl w Λ′αl

)

Taking Λ′ to be large enough, we find that the difference in (4.29) is separated from zero. Hence,
its limit is positive.
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4.5.2 Main theorem proof

Proof of Theorem 4.2. We begin the proof by splitting [0, T ] into intervals of some small enough
δ > 0

[0, T ]n = δ
⋃

k≤Nδ

[k, k + 1], Nδ :=

⌈
T

δ

⌉
,

and applying the Bonferroni inequality, which yields

Σ′
1 − Σ2 ≤ P {∃ t ∈ [0, T ] : X(t) > ub} ≤ Σ1,

where

Σ1 :=
∑
k≤Nδ

P {∃ t ∈ δ[k, k + 1] : X(t) > ub} , Σ2 :=
∑

k,j≤Nδ

k ̸=j

P

{
∃ t ∈ δ[k, k + 1] : X(t) > ub

∃ s ∈ δ[j, j + 1] : X(s) > ub

}

and Σ′
1 is defined by the same formula as Σ1, but with (N − 1) instead of N in the upper limit

of summation. At this point we split the proof into two parts. First, we will focus on finding
the exact asymptotics of the single sum Σ1 ∼ Σ′

1, and then demonstrate that the double sum Σ2

is negligible with respect to Σ1.

Single sum. Let min and max applied to a matrix denote component-wise minimum and
maximum and let J denote a d× d matrix of all ones: Jkj = 1. Take ε > 0 and for each l define
two matrices, which bound Bl(t) on δ[k, k + 1] component-wise from below and from above by

Bl,k,ε,+ := min
t∈δ[k,k+1]

Bt − εJ, Bl,k,ε,− := max
t∈δ[k,k+1]

Bt + εJ.

Since for all t ∈ [0, T ] we have B̃t ▷ 0 strictly, it follows that B̃k, ε,± ▷ 0 if ε is small enough.
Denote

Bk,ε,± := (Bl,k,ε,±)l=1,...,n.

By Lemma 4.2 the real matrix-valued functions Eαl, Bl,k, ε,±(sl) are positive definite and give rise
to the following bounds on the covariance of X:

n∑
l=1

Eαl, Bl,k, ε,−(sl) ≤ R(t + s, t) ≤
n∑

l=1

Eαl, Bl,k, ε,+
(sl)

for small enough s. These functions generate two stationary Gaussian processes Yl,k,ε,±(s), s ∈
R, which by Lemma 4.4 provide us with bounds on the high excursion probabilities on δ[k, k+1]:

P {∃ t ∈ δ[k, k + 1] : X(t) > ub} ≤ P

{
∃ t ∈ δ[k, k + 1] :

n∑
l=1

Yl,k,ε,−(t) > ub

}

≥ P

{
∃ t ∈ δ[k, k + 1] :

n∑
l=1

Yl,k,ε,+(t) > ub

}

Note that the sign plus is on the left and minus is on the right.

Applying Theorem 4.1, we find that

P {∃ t ∈ δ[k, k + 1] : Yk,ε,±(t) > ub} ∼ δnHα,Bk,ε,±,w

n∏
l=1

u−2/αl P {X(0) > ub} .
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By adding together all the terms, we obtain[
Nu−1∑
k=1

Hα,Bk,ε,+,w δn

]
u2/α P {X(0) > u b} ≤ Σ′

1

≤ Σ1 ≤

[
Nu∑
k=1

Hα,Bk,ε,−,w δn

]
u2/α P {X(0) > u b} .

By continuity of B 7→ Hα,B,b, we have that

lim
ε→0

lim
δ→0

Nδ∑
k=1

Hα,Bk,ε,±,w δn −−−→
δ→0

∫ T

0
Hα,B(t),w dt .

Hence, as u → ∞,

lim
ε→0

lim
δ→0

Σ′
1 ∼ lim

ε→0
lim
δ→0

Σ1 ∼
[∫ T

0
Hα,B(t),w dt

]
u2/α P {X(0) > u b} .

Double sum. The double sum can be estimated by the same argument as in the proof of
Theorem 4.1.

4.6 Appendix

4.6.1 Gordon inequality

The following Slepian-type lemma is stated in [2] for the case where T ⊂ R, but it can be
extended to the following version by standard techniques. Due to its complexity we present it
here without proof.

Lemma 4.4 (Gordon inequality). Let X(t), t ∈ T and Y (t), t ∈ T be two centered separable
vector-valued Gaussian processes with values in Rd defined on a separable metric space T . If for
all t, s ∈ T holds

RX(t, t) = RY (t, t), RX(t, s) ≥ RY (t, s),

then for u ∈ Rd holds

P {∃ t ∈ T : X(t) > u} ≤ P {∃ t ∈ T : Y (t) > u} .

4.6.2 Local Pickands lemma

The reader may find the uniform multivariate version of the local Pickands lemma in [1]. How-
ever, for the needs of this paper this strong result is not necessary, since we obtain uniformity
using Gordon’s inequality (Lemma 4.4). This is why we present here a simplified version of the
local Pickands lemma.

Lemma 4.5. Let X(t), t ∈ [0, T ]n be a centered Hölder continuous homogenous Gaussian ran-
dom field with values in Rd and covariance R satisfying

Σ −R(t) =
n∑

l=1

[
Bl|tl|αl1tl≥0 + B⊤

l |tl|αl1tl<0

]
+ ϵ(t), ϵ(t) = o

(
n∑

l=1

|tl|αl

)
as t → 0,
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where Bl’s are some d×d real matrices and αl ∈ (0, 2]. Denote α := (αl)l=1,...,n, B := (Bl)l=1,...,n

and w := Σ−1 b̃, where b̃ is the unique solution of the quadratic programming problem ΠΣ(b).
Then the matrix-valued functions Rαl,Bl

: R → Rd×d defined by

Rαl,Bl
(tl, sl) := Sαl,Bl

(tl)+Sαl,Bl
(−sl)−Sαl,Bl

(tl−sl), Sαl,Bl
(tl) = |tl|αl

[
Bl1tl≥0+B⊤

l 1tl<0

]
are positive definite and for any E ⊂ [0, T ] containing 0 and closed holds

P
{
∃ t ∈ u−2/αE : X(t) > ub

}
∼ Hα,B,w(E) P {X(0) > ub}

with

Hα,B,w(E) =

∫
Rd

e1
⊤x P

{
∃ t ∈ E :

n∑
l=1

diag(w)
[
Yl(tl) − Sαl,Bl

(tl)w
]
> x

}
dx ∈ (0,∞),

where Yl is a continuous zero mean Gaussian process associated to the covariance function
Rαl,Bl

(t, s).
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Chapter 5

Extremes of Brownian Decision Trees

A realization of the Brownian decision tree process.

We consider a Brownian motion with linear drift that splits at fixed time points into a fixed
number of branches, which may depend on the branching point. For this process, which we shall
refer to as the Brownian decision tree, we investigate the exact asymptotics of high exceedance
probabilities in finite time horizon, including: the probability that at least one branch exceeds
some high threshold, the probability that the largest distance between branches gets large and
the probability that all branches simultaneously exceed some high barrier. Additionally, we find
the asymptotics for the probability that all branches of at least one of M independent Brownian
decision trees exceed a high threshold.

This is a joint work with K.Dȩbicki and N. Kriukov, submitted to Annals of Applied Prob-
ability.
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5.1 Introduction

We investigate the exact asymptotics of high exceedance probabilities for the process, which
we shall refer to as the Brownian decision tree. This process is a close relative of the standard
branching Brownian motion (BBm) and it can be informally described as follows: at time t = 0
a Brownian motion B(t) sets off from zero and runs freely until a non-random time τ1 > 0, at
which it splits into N1 ≥ 1 conditionally on the common past independent Brownian motions

B(t)
branching7−−−−−−→

at τ1
B1(t) =

B(τ1)
...

B(τ1)

+ B∗
1(t− τ1),

where B∗
1 is an RN1-valued Brownian motion. The resulting vector-valued process again runs

freely up to some time point τ2 > τ1, where each of its components splits again into N2 ≥ 1
particles

B1(t)
branching7−−−−−−→

at τ2
B2(t) =

B1(τ2)
...

B1(τ2)

+ B∗
2(t− τ2)

and the construction recursively repeats.

There are two differences between this and the classical BBm model as presented, for example,
in the seminal paper by Bramson [1]. Firstly, the branching times are non-random, whereas
in the standard model the distances between them are exponentially distributed. Secondly,
all branches (that is, the components of the vector-valued process described above) undergo
splitting into the same number of offsprings and at the same time (in the classical BBm model
each branch has its own branching clock). This, along with the usual description of the classical
BBm model as a process indexed by a tree, suggests the name Brownian decision trees, where
the word “decision” refers to the specific type of trees branching at the same points and into the
same amount of branches.

(a) Classical branching Brownian motion. (b) Brownian decision tree.

The main findings of the paper are collected in Section 5.3, which we begin with two preliminary
results. In Section 5.3.1 we consider the exact asymptotics of the probability that at least one
branch of the Brownian decision tree with drift exceeds u, as u → ∞, that is,

P {∃ t ∈ [0, T ], ∃ γ ∈ Γ: Bγ(t) − ct > u} , (5.1)

where Γ = {0, . . . , n − 1} is the set of indices of the decision tree branches and c ∈ R is
a deterministic constant. In Theorem 5.1 we show that (5.1) is asymptotically equal to the
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product of the number of branches at time T and the probability that a single Brownian motion
with drift c crosses level u in time interval [0, T ].

A similar approach to the above can be applied for the exact asymptotics of the largest distance
between the branches

P {∃ t ∈ [0, T ],∃ γ1, γ2 ∈ Γ: Bγ1(t) −Bγ2(t) > u} , (5.2)

as u → ∞, which is derived in Theorem 5.2.

In Section 5.3.3 we focus on the probability

P {∃ t ∈ [0, T ] ∀ γ ∈ Γ: Bγ(t) − ct > u} (5.3)

that for some t ∈ [0, T ] all branches exceed threshold u. This problem is much more complicated
and needs a more subtle approach than used in the analysis of (5.1) and (5.2). In order to get the
exact asymptotics of (5.3) we develop the technique introduced in [2] for extremes of centered
vector-valued Gaussian processes to the branching model considered in this contribution. The
main result of this section is displayed in Theorem 5.3, which is supplemented by an extension of
Korshunov-Wang inequality [3, 4, 5] (see Proposition 5.7) where a tight upper bound for (5.3),
that is valid for all u > 0, is derived. Complementary to the above findings, we investigate the
asymptotics of (5.3) for a version of Brownian decision tree with random numbers of offsprings
(Corollary 5.1) and the limiting distribution of the corresponding conditional exceedance times
(Corollary 5.2).

In Section 5.3.4 we present asymptotic results for the process which we call Brownian decision
forest, that consists of a family of M independent Brownian decision trees BΓi , which grow
from different points xi ∈ R. For this purpose we introduce a partial order on the set of tuples
(τ ,N , c, x), determining the trees of a forest, such that the trees which are high in this order
are more likely to exceed the high barrier. In Theorem 5.4 we use this order to find the exact
asymptotics of the probability that all branches of at least one tree in a forest exceed some high
barrier simultaneously.

We note that in the context of the classical branching Brownian motion most of the asymptotical
results focus either on the number of particles or the distribution of the highest branch, which
in our setup would be maxγ∈ΓBγ(t). In both cases the limiting parameter is t approaching
infinity. We refer the reader to the classical papers [1, 6, 7, 8, 9]. The two types of questions
mentioned above have been investigated extensively in the last decades for various versions of
the classical BBm model. Among these versions, the most popular is the Kesten’s BBm with
absorption (see the original paper [10]). Other models include BBm in random [11, 12] and
periodic [13] environments, spatial selection such as in the Brownian bees model [14, 15, 16],
spatially-inhomogenous branching rates [17], self-repulsive BBm [18] and many others.

As it turns out, the exact asymptotics of the counterpart of (5.3) for the classical BBm is
relatively simpler to obtain than for the analyzed in this contribution Brownian decision trees.
Namely, it suffices to observe that the most probable scenario in this case is that the BBm process
does not manage to branch even once before hitting the high barrier. Hence, the probability (5.3)
is asymptotically equivalent to the probability that the first branching event happens after T
times the one-dimensional ruin probability of the Brownian motion. We present here the precise
result, the proof of which the reader can find in the Appendix.

Proposition 5.1. Let B(t), t ≥ 0 be the classical Branching Brownian motion as described
above, with τ ∼ Exp(1). Then, for any c ∈ R we have

P {∃ t ∈ [0, T ] ∀ γ ∈ Γ: Bγ(t) − ct > u} ∼ e−T ×
√

2T

π
exp

(
−(u + cT )2

2T

)
.
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The paper is organized as follows. We begin with a construction of the Brownian decision tree
process and establish some necessary notation and basic properties in Section 5.2. The main
results are presented in Section 5.3. Most of the technical proofs are relegated to Sections 5.4
and 5.5.

5.2 Definitions and basic properties of Brownian decision trees

Let 0 < τ1 < . . . < τη < T be a finite collection of points, further referred to as the branching
points, and a sequence of numbers Ni ≥ 1 with i = 1, . . . , η, interpreted as the numbers of
branches generated at τi. Denote by Pi the total number of branches born up to time τi, that is,

Pi =

i∏
j=1

Nj ,

and define the set Γ indexing the branches on [0, T ] by

Γ = {0, 1, . . . , Pη − 1}.

Let Ii be the Pi × Pi identity matrix, and 1i = (1, . . . , 1)⊤ ∈ RPi . Denote by i(t) the number of
branching points before t

i(t) = max{i ∈ {1, . . . , η} : t > τi}.

Clearly, each t belongs to the corresponding interval of the form (τi(t), τi(t)+1].

Next, take a collection of mutually independent standard Brownian motions B∗
i (t), t ≥ 0 in RPi

indexed by i = 1, . . . , η and a one dimensional Brownian motion B∗
0(t), t ≥ 0. Assume that all

these processes are mutually independent. Using the ingredients described above, we construct
a new process B̃Γ(t), t ∈ [0, T ], which we shall call the Brownian decision tree, as follows: for
t ∈ (τi, τi+1] set

B̃Γ(t) :=

B̃Γ(τi)
...

B̃Γ(τi)

+ B∗
i (t− τi) for t ∈ (τi, τi+1]

and
B̃Γ(t) := B∗

0(t) for t ∈ [0, τ1].

Note that (B̃Γ(t))t∈(τi,τi+1] belongs to C((τi, τi+1],RPi). We can extract the individual branch
indexed by γ ∈ Γ by taking

Bγ(t) :=
(
B̃Γ(t)

)
(γ mod Pi(t))+1

(5.4)

and denote for two fixed branches γ1 and γ2 their separation moment at which they diverge by

κ(γ1, γ2) := min {n ∈ {1, . . . , η} : γ1 ̸= γ2 mod Pn} .

Clearly, Bγ1(t) = Bγ2(t) for t ≤ τκ(γ1,γ2).

Next, we present some useful properties of Brownian decision trees.

Proposition 5.2. For γ ∈ Γ the process Bγ is a Brownian motion and for t ∈ (τ1, T ] it
admits the following representation in terms of a collection of independent Brownian motions
{B∗

j }j=0,...,η:

Bγ(t) = B∗
0(τ1) +

i(t)−1∑
j=1

(
B∗

j

)
(γ mod Pj)+1

(τj+1 − τj) +
(
B∗

i(t)

)
(γ mod Pi(t))+1

(t− τi(t)). (5.5)
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Moreover, for γ1 ̸= γ2 and t1, t2 ∈ [0, T ] holds

Cov(Bγ1(t1), Bγ2(t2)) = min{t1, t2, τκ(γ1,γ2)}. (5.6)

The proof of Proposition 5.2 can be found in Appendix.

Sometimes it is more convenient to work with the process BΓ, which contains all the branches
simultaneously

BΓ(t) = (Bγ(t))γ∈Γ ∈ RPη . (5.7)

The difference between this process and B̃Γ is that its values belong to RPη for each t instead
of RPi(t) . The two processes are related as follows:

B̃Γ(t) = (BΓ(t))γ∈{0,...,Pi(t)−1}. (5.8)

Unlike B̃Γ(t), the variance matrix of this process is degenerate for all t ∈ [0, τη]:

det (Var (BΓ(t))) = 0.

Proposition 5.3. For 0 ≤ t1 < t2 ≤ T , the random vector BΓ(t2) −BΓ(t1) is independent of
the process BΓ(t)|t∈[0,t1].

Let Σ(t) denote the covariance matrix of the random vector B̃Γ(t):

Σ(t) := E
{
B̃Γ(t) B̃⊤

Γ (t)
}
, t ∈ [0, T ].

Proposition 5.4. For t ∈ (τ1, T ],

Σ(t) =

Σ(τi(t)) . . . Σ(τi(t))
...

. . .
...

Σ(τi(t)) . . . Σ(τi(t))

+ (t− τi(t))Ii(t),

where the first term matrix has N2
i(t) blocks, all equal to Σ(τi(t)).

In the next proposition we find the eigenvalues of Σ(t).

Proposition 5.5. For t ∈ [0, T ], the eigenvalues of matrix Σ(t) are given by

µv(t) = (t− τi(t)) +

i(t)∑
l=v+1

(τl − τl−1)

i(t)∏
j=l

Nj , v = 0, 1, . . . , i(t). (5.9)

The multiplicity of µv(t) equals Pv − Pv−1, except for µ0, the multiplicity of which is 1. Addi-
tionally, for any t ∈ [0, T ], the vector 1i(t) is an eigenvector of Σ(t) corresponding to µ0(t).

Using Proposition 5.5 we can obtain the following result.

Proposition 5.6. For c ∈ R and T > 0

P {BΓ(T ) − cT1η > u1η} ∼ u−Pη
µ
Pη−1/2
0 (T )

(2π)Pη/2
∏η

v=1 µ
(Pv−Pv−1)/2
v (T )

exp

(
−(u + cT )2Pη

2µ0(T )

)
as u → ∞, where µv(T ) are defined in (5.9).

Remark 5.1. The result obtained in Proposition 5.6 still hold for T = Tu with Tu → T as
u → ∞.

The proofs of Proposition 5.5 and Proposition 5.6 are given in Appendix.
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5.3 Main results

In this section we present the main findings of this contribution. We begin with the asymptotic
analysis of the high exceedance probability of at least one branch of BΓ with linear drift, then
we proceed to the asymptotics of the largest distance between the branches. In Section 5.3.3 we
investigate the probability that all branches of BΓ with linear drift exceed high threshold and
then extend it to the analysis of a finite collection of independent Brownian decision trees.

5.3.1 High-exeedance of at least one branch

Consider the probability that at least one branch of the branching Brownian decision tree with
linear trend exceeds some large threshold u. Clearly, for each u > 0 and a standard Brownian
motion B(t), t ∈ [0,∞)

P {∃ t ∈ [0, T ], ∃ γ ∈ Γ: Bγ(t) − ct > u} ≤ PηP {∃ t ∈ [0, T ] : B(t) − ct > u} ,

where Pη is the total amount of the branches in the decision tree. It appears that, as u → ∞,
the above bound provides the exact asymptotics, as shown in the following theorem.

Theorem 5.1. For c ∈ R, as u → ∞,

P {∃ t ∈ [0, T ], ∃ γ ∈ Γ: Bγ(t) − ct > u} ∼ Pη P {∃ t ∈ [0, T ] : B(t) − ct > u}

∼ Pη

√
2

π

√
T

u + cT
exp

(
−(u + cT )2

2T

)
.

5.3.2 The largest distance between the branches

Next, we investigate the probability that in time interval [0, T ] the largest distance between the
branches of the Brownian branching tree with drift gets larger than u > 0

P {∃ t ∈ [0, T ], ∃ γ1, γ2 ∈ Γ: (Bγ1(t) − ct) − (Bγ2(t) − ct) > u} .

We note that the drifts in the above formula cancel out. Thus in the following result we consider
the driftless case.

Theorem 5.2. As u → ∞

P {∃ t ∈ [0, T ], ∃ γ1, γ2 ∈ Γ: Bγ1(t) −Bγ2(t) > u}

∼ P 2
η

N1 − 1

N1

2
√
T − τ1
u
√
π

exp

(
− u2

4(T − τ1)

)
.

5.3.3 Simultaneous high-exceedance of all branches

In this section we analyze properties of the simultaneous all-branch high exceedance probability

P {∃ t ∈ [0, T ] ∀γ ∈ Γ: Bγ(t) − ct > u} . (5.10)

We begin with a non-asymptotic result. Obviously, for each u > 0

P {∃ t ∈ [0, T ] ∀γ ∈ Γ: Bγ(t) − ct > u} ≥ P {∀γ ∈ Γ: Bγ(T ) − cT > u} , (5.11)
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where the asymptotics, as u → ∞, of the probability on the righthand side of the above inequality
is given in Proposition 5.6.

In the following proposition we find an upper bound for (5.10) which differs from the bound
(5.11) by some constant.

Proposition 5.7. For c ∈ R and any u > 0,

P {∃ t ∈ [0, T ] ∀γ ∈ Γ: Bγ(t) − ct > u} ≤ C P {∀γ ∈ Γ: Bγ(T ) − cT > u} ,

where C = (P {ξ > |c|})−Pη with ξ a standard normal random variable.

In order to present the exact asymptotics of (5.10) as u → ∞ we need to introduce the following
constant

HN ,λ :=

∫
RN

P
{
∃ t ∈ (0,∞), ∀ i ∈ {1, . . . ,N} : λB∗

i (t) − λ2t > xi
}
e
∑N

i=1 xidx, (5.12)

where B∗
i (t), t ∈ [0,∞), i = 1, ...,N ∈ N are mutually independent standard Brownian motions

and λ > 0. The finiteness of this constant is shown in Lemma 5.4.

The following result constitutes the main finding of this section.

Theorem 5.3. For c ∈ R, as u → ∞,

P {∃ t ∈ [0, T ] ∀ γ ∈ Γ: Bγ(t) − ct > u} ∼ HPη ,1/µ0(T ) P {∀ γ ∈ Γ: Bγ(T ) − cT > u} .

Remark 5.2. The results obtained in Proposition 5.7 and Theorem 5.3 still hold for T = Tu

with Tu → T as u → ∞.

Interestingly, the above result can be extended to the version of Brownian decision tree with ran-
dom numbers of offsprings Ni. For a random vector N , let essinf(N) denote the componentwise
essential infimum of N .

Corollary 5.1. Assume that Ni ∈ N are independent random variables. Then,

P {∃ t ∈ [0, T ] ∀γ ∈ Γ: Bγ(t) − ct > u} ∼ HPη ,1/µ0(T )

η∏
i=1

P {Ni = essinf(Ni)}

× P {∀ γ ∈ Γ: Bγ(T ) − ct > u | N = essinf(N)} ,

as u → ∞. The constant HPη ,1/µ0(T ) is calculated under the assumption that N = essinf(N).

The results obtained in Theorem 5.3 and Proposition 5.6 allow us to derive the asymptotics for
the conditional first time of simultaneous exceedance of all branches

T (u) := inf{t ∈ [0, T ] : ∀ γ ∈ Γ: Bγ(t) − ct > u}.

Corollary 5.2. Then for any x, y ∈ (0,+∞) such that x > y, holds

lim
u→∞

P
{
u2(T − T (u)) ≥ x | T (u) ≤ T − y/u2

}
= exp

(
−(x− y)Pη

2µ2
0(T )

)
.

Example 5.1 (Binary tree). Suppose that the difference between branching points equals one
(i.e. τi − τi−1 = 1 for all i ∈ N) and each process always splits into two (i.e. Ni = 2 for all
i ∈ N). For the sake of simplicity, let T be integer. Then

µv(T ) = 2T−v − 1.
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Combining Theorem 5.3 and Proposition 5.6 we obtain that as u → ∞

P {∃ t ∈ [0, T ] ∀γ ∈ Γ: Bγ(t) − ct > u}

∼
H2T−1,1/(2T−1)(2

T − 1)2
T−1−1/2

(2π)2T−2∏T−1
v=1 (2T−v − 1)2v−2

u−2T−1
exp

(
− 2T−2

2T − 1
(u + cT )2

)
.

5.3.4 Brownian decision forests

In this section we shall consider a set of M ∈ N independent Brownian decision trees with drift.
That is, for i = 1, . . . ,M we take a triple (τi,Ni, c), where τi and Ni are two vectors and ci is
a constant, associate to each of them a Brownian decision tree BΓi as described in Section 5.2
(such that all of them are independent), and set

Wi(t) := BΓi(t) + (xi − ci t)1ηi ,

where xi’s are interpreted as the starting points of these trees. Each tree Wi(t) is thus uniquely
defined by its tuple (τi,Ni, ci, xi). Let us define a partial order relation ≽ on the set of trees as
follows: we write (τ1,N1, c1, x1) ≽ (τ2,N2, c2, x2) if one of the following three conditions holds:

(i)
µ0,1(T )

Pη1

>
µ0,2(T )

Pη2

,

(ii)
µ0,1(T )

Pη1

=
µ0,2(T )

Pη2

and c1T − x1 < c2T − x2 ,

(iii)
µ0,1(T )

Pη1

=
µ0,2(T )

Pη2

and c1T − x1 = c2T − x2 and Pη1 ≤ Pη2 .

In other words, it is the lexicographic order on the tuples (µ0(T )/Pη, x − cT, −Pη). One may
notice that this order is full. Next, let

(τ1,N1, c1, x1) ≈ (τ2,N2, c2, x2) ⇐⇒

{
(τ1,N1, c1, x1) ≼ (τ2,N2, c2, x2),

(τ1,N1, c1, x1) ≽ (τ2,N2, c2, x2)

and

(τ1,N1, c1, x1) ≻ (τ2,N2, c2, x2) ⇐⇒

{
(τ1,N1, c1, x1) ≽ (τ2,N2, c2, x2),

(τ1,N1, c1, x1) ̸≈ (τ2,N2, c2, x2).

Combining Theorem 5.3 and Proposition 5.6 we straightforwardly obtain the following result.

Lemma 5.1. The following equivalences hold:

(τi,Ni, ci, xi) ≻ (τj ,Nj , cj , xj) ⇐⇒ lim
u→∞

P {∃t ∈ [0, T ] : Wi(t) > u1ηi}
P
{
∃t ∈ [0, T ] : Wj(t) > u1ηj

} = ∞,

(τi,Ni, ci, xi) ≺ (τj ,Nj , cj , xj) ⇐⇒ lim
u→∞

P {∃t ∈ [0, T ] : Wi(t) > u1ηi}
P
{
∃t ∈ [0, T ] : Wj(t) > u1ηj

} = 0,

(τi,Ni, ci, xi) ≈ (τj ,Nj , cj , xj) ⇐⇒ lim
u→∞

P {∃t ∈ [0, T ] : Wi(t) > u1ηi}
P
{
∃t ∈ [0, T ] : Wj(t) > u1ηj

} ∈ (0,∞).

Lemma 5.1 allows us to find the asymptotics for the probability that all branches of at least one
of our M trees exceed the threshold u.
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Theorem 5.4. Let us define by A the set of indices i ∈ {1, . . . ,M} for which the corresponding
set (τi,Ni, ci, xi) is the maximal among all given. Then, as u → ∞,

P {∃ i ∈ {1, . . . ,M}, t ∈ [0, T ] : Wi(t) > u1ηi} ∼
∑
i∈A

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} ,

where the asymptotics of each term is given in Theorem 5.3.

5.4 Proofs

5.4.1 Proof of Proposition 5.1

Let τ ∼ Exp(1) be the first branching moment. Define by d the dimension of vector B(t) (i.e.
the amount of branches at the point t), and 1(t) = (1, . . . , 1) ∈ Rd. Then,

P {∃ t ∈ [0, T ] : B(t) − ct1(t) > u1(t), τ ≥ T}

≤ P {∃ t ∈ [0, T ] : B(t) − ct1(t) > u1(t)}

≤ P
{
∃ t ∈ [0, T ] : B(t) − ct1(t) > u1(t), τ ≤ T − 2u−1

}
+ P

{
∃ t ∈ [0, T ] : B(t) − ct1(t) > u1(t), τ ∈ [T − 2u−1, T ]

}
+ P {∃t ∈ [0, T ] : B(t) − ct1(t) > u1(t), τ ≥ T}

=: S1 + S2 + S3

Consider each term separately. For S3, using that (B | τ ≥ T ) for t ∈ [0, T ] is a Brownian
motion independent of τ , we have

S3 = P {τ ≥ T} P {∃ t ∈ [0, T ] : B(t) − ct1(t) > u1(t) | τ ≥ T}

∼ e−T

√
2T

π
u−1 exp

(
−(u + cT )2

2T

)
as u → ∞. Considering S2, again using that B1 is Brownian motion independent of τ , as u → ∞

S2 ≤ P
{
τ ∈ [T − 2u−1, T ]

}
P {∃ t ∈ [0, T ] : B1(t) − ct > u}

∼ (e2u
−1 − 1) e−T

√
2T

π
u−1 exp

(
−(u + cT )2

2T

)
,

implies that

lim
u→∞

S2

S3
→ 0.

Then, for S1

S1 ≤ P
{
∃ t ∈ [0, T − u−1] : B1(t) − ct > u, τ ≤ T − 2u−1

}
+ P

{
∃ t ∈ [T − u−1, T ] :

B1(t) + B2(t)

2
− ct > u, τ ≤ T − 2u−1

}
=: Z1 + Z2

For Z1, using that

Z1 ∼ (1 − e−T )

√
2T

π
u−1 exp

(
−(u + c(T − u−1))2

2(T − u−1)

)
,
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we obtain

lim
u→∞

Z1

S3
= lim

u→∞

1 − e−T

e−T
exp

(
(u + cT )2

2T
− (u + c(T − u−1))2

2(T − u−1)

)

= lim
u→∞

1 − e−T

e−T
exp

(
−u−1(u + cT )2 − 4cT 2 + 2Tc2u−2

2T (T − u−1)

)
= 0.

Finally,

Z2 = E

{
I{τ<T−2u−1} P

{
∃ t ∈ [T − u−1, T ] :

B1(t) + B2(t)

2
− ct > u

∣∣∣∣ τ}}

≤ sup
t∈[0,T−2u−1]

P

{
∃ t ∈ [T − u−1, T ] :

B1(t) + B2(t)

2
> u− |c|T

∣∣∣∣ τ = t

}
.

Since (B1(t) + B2(t) | τ = t) is a Gaussian process and for any t ∈ [0, T − u−1]

Var

(
B1(t) + B2(t)

2

∣∣∣∣ τ = t

)
=

{
t+t
2 , t > t,

t, t ≤ t,

we can apply Piterbarg inequality (see, e.g., [19, Theorem 8.1]) obtaining that for u > |c|T

P

{
∃ t ∈ [T − u−1, T ] :

B1(t) + B2(t)

2
> u− |c|T

∣∣∣∣ τ = t

}

≤ C(u− |c|T )α exp

(
−(u− |c|T )2

2σt

)
,

where

σt = max
t∈[0,T ]

Var

(
B1(t) + B2(t)

2

)
=

T + t

2

and C > 0, α ∈ R are some constants. Using that C, α does not depend ot t, we get

Z2 ≤ Cuα sup
t∈[0,T−2u−1]

exp

(
−(u− |c|T )2

2σt

)
= Cuα exp

(
−(u− |c|T )2

2(T − u−1)

)
.

It remains to note that Z2/S3 → 0 as u → ∞ by the same reason as Z1/S3.

5.4.2 Proof ot Theorem 5.1

We begin with the observation that

P {∃ t ∈ [0, T ], γ ∈ Γ: Bγ(t) − ct > u}

≥
∑
γ∈Γ

P {∃ t ∈ [0, T ] : Bγ(t) − ct > u} −
∑

γ1,γ2∈Γ
γ1 ̸=γ2

P

{
∃ t ∈ [0, T ] :

Bγ1(t) − ct > u,

Bγ2(t) − ct > u

}

and
P {∃ t ∈ [0, T ], γ ∈ Γ: Bγ(t) − ct > u} ≤

∑
γ∈Γ

P {∃ t ∈ [0, T ] : Bγ(t) − ct > u} ,
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where branch Bγ is a Brownian motion. By [20, Formula 1.1.4 and Appendix 2, Section 8], we
have

P {∃ t ∈ [0, T ] : Bγ(t) − ct > u} ∼ 2
√
T√

2π(u + cT )
exp

(
−(u + cT )2

2T

)
(5.13)

as u → ∞. For the double sum on the left hand side, we have the following upper bound

P

{
∃ t ∈ [0, T ] :

Bγ1(t) − ct > u,

Bγ2(t) − ct > u

}
≤ C P

{
Bγ1(T ) − cT > u,

Bγ2(T ) − cT > u

}
.

Here C is some positive constant independent of u; see [21, Theorem 3.1]. Since (Bγ1(T ), Bγ2(T ))
is a Gaussian vector with covariance matrix

Σ =

(
T τκ(γ1,γ2)

τκ(γ1,γ2) T

)
we have for some positive constant C2 > 0 as u → ∞

P {Bγ1(T ) + cT > u, Bγ2(T ) − cT > u} ∼ C2 u
−2 exp

(
− (u + cT )2

2
(
T + τκ(γ1,γ2)

)) .

Using that τκ(γ1,γ2) < T for γ1 ̸= γ2, we obtain by (5.13)

P

{
∃ t ∈ [0, T ] :

Bγ1(t) − ct > u,

Bγ2(t) − ct > u

}
= o (P {∃ t ∈ [0, T ] : Bγ(t) − ct > u})

for any γ, γ1, γ2 ∈ Γ, γ1 ̸= γ2, establishing the claim.

5.4.3 Proof of Theorem 5.2

Note that∑
γ1,γ2∈Γ

P {∃ t ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u}

≥ P {∃ t ∈ [0, T ],∃ γ1, γ2 ∈ Γ: Bγ1(t) −Bγ2(t) > u}

≥
∑

γ1,γ2∈Γ
P {∃ t ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u}

−
∑

γ1,γ2,γ3,γ4∈Γ
{γ1,γ2}≠{γ3,γ4}

P {∃ t, s ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u,Bγ3(s) −Bγ4(s) > u} .

For any γ1 ̸= γ2, the process Bγ1 −Bγ2 admits the following representation

Bγ1(t) −Bγ2(t) =

{
0, t ≤ τκ(γ1,γ2),

B∗(2(t− τκ(γ1,γ2)), t > τκ(γ1,γ2),

where B∗(t) is Brownian motion. Hence, as u → ∞,

P {∃ t ∈ [0, T ] : Bγ1(t) −Bγ2 > u}

= P
{
∃ t ∈ [τκ(γ1,γ2), T ] : B∗(2(t− τκ(γ1−γ2))) > u

}
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= P
{
∃ t ∈ [0, 2(T − τκ(γ1,γ2))] : B

∗(t) > u
}

∼
2
√

2(T − τκ(γ1,γ2))

u
√

2π
exp

(
− u2

4(T − τκ(γ1,γ2))

)
.

For γ1, γ2, γ3, γ4 ∈ Γ, if κ(γ1, γ2) < κ(γ3, γ4), then as u → ∞

P {∃ t ∈ [0, T ] : Bγ3(t) −Bγ4 > u}
P {∃ t ∈ [0, T ] : Bγ1(t) −Bγ2 > u}

→ 0.

The latter implies that

∑
γ1,γ2∈Γ

P {∃ t ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u}

∼
∑

γ1,γ2∈Γ
κ(γ1,γ2)=1

2
√

2(T − τ1)

u
√

2π
exp

(
− u2

4(T − τ1)

)

= N1(N1 − 1)

(
Pη

N1

)2 2
√

2(T − τ1)

u
√

2π
exp

(
− u2

4(T − τ1)

)
.

Next, consider the double events’ probabilities. For γ1, γ2, γ3, γ4 ∈ Γ,

P {∃ t, s ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u,Bγ3(s) −Bγ4(s) > u}

≤ P

{
∃ t, s ∈ [0, T ] :

Bγ1(t) −Bγ2(t) + Bγ3(s) −Bγ4(s)

2
> u

}
.

Using that (Bγ1(t) −Bγ2(t) + Bγ3(s) −Bγ4(s))/2 is a Gaussian random field and

Var

(
Bγ1(t) −Bγ2(t) + Bγ3(s) −Bγ4(s)

2

)
≤ 3T + τη − 4τ1

2
,

by Piterbarg inequality (see, e.g., [19, Theorem 8.1]) there exist some constants C > 0, α ∈ R

P {∃ t, s ∈ [0, T ] : Bγ1(t) −Bγ2(t) + Bγ3(s) −Bγ4(s) > 2u}

≤ Cuα exp

(
− u2

3T + τη − 4τ1

)
.

The above inequality implies that

∑
γ1,γ2,γ3,γ4∈Γ

{γ1,γ2}≠{γ3,γ4}

P

{
∃ t, s ∈ [0, T ] :

Bγ1(t) −Bγ2(t) > u,

Bγ3(s) −Bγ4(s) > u

}
∑

γ1,γ2∈Γ
P {∃t ∈ [0, T ] : Bγ1(t) −Bγ2(t) > u}

→ 0

as u → ∞, establishing the proof.
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5.4.4 Proofs of results on simultaneous high-exceedance probability of all
branches

Until the end of this secion, let us define

W (t) = BΓ(t) − ct, c = c1η, (5.14)

where c ∈ R is fixed. Then the the all-branch high exceedance probability can be stated as

P {∃ t ∈ [0, T ], ∀γ ∈ Γ: Bγ(t) − ct > u} = P {∃ t ∈ [0, T ] : W (t) > u1η} .

Proof of Proposition 5.7. As in the proof of [3, Theorem 1.1] define a stopping time by

T = inf{t ∈ [0, T ] : W (t) > u1η} = inf{t ∈ [0, T ] : ∀γ ∈ Γ Bγ(t) − ct > u},

using the convention inf ∅ = T + 1 and write FT for its distribution function. Since the paths
of W are continuous, T is well-defined. By Proposition 5.3,

P {W (T ) > u1η} =

∫ T

0
dFT (t) P {W (T ) > u1η | T = t}

=

∫ T

0
dFT (t) P {∀γ ∈ Γ: Bγ(T ) − cT > u | T = t}

≥
∫ T

0
dFT (t) P {∀γ ∈ Γ: Bγ(T ) −Bγ(t) > c(T − t)} .

Consider the last probability. Define for t ∈ [0, T1] and γ ∈ Γ a Gaussian random variable Bγ(t)
by

Bγ(t) = (Bγ(T ) −Bγ(t)) .

Its variance is
Var

(
Bγ(t)

)
= Var (Bγ(T ) −Bγ(t)) = T1 − t,

and the covariance between them

Cov
(
Bγ1(t), Bγ2(t)

)
= min{T, τκ(γ1,γ2)} − min{t, τκ(γ1,γ2)} ≥ 0.

Hence, using Slepian inequality (see e.g., Theorem 2.2.1 in [22]) we arrive at

P
{
∀ γ ∈ Γ: Bγ(t) > c(T1 − t)

}
≥

Pη∏
i=1

P
{
Bi(t) > |c| (T1 − t)

}
=
(

P
{
ξ > |c|

√
T1 − t

})Pη

≥ (P {ξ > |c|})Pη ,

where ξ is a standard normal random variable. Hence, we can continue our initial inequality as
follows

P {W (T1) > u1η} ≥
∫ T1

0
dFT (t) P {∀γ ∈ Γ: Bγ(T1) −Bγ(t) > c(T1 − t)}

≥ (P {ξ > |c|})Pη

∫ T1

0
dFT (t)

= (P {ξ > |c|})Pη P {T ≤ T1}

= (P {ξ > |c|})Pη P {∃ t ∈ [0, T1] : W (t) > u1η}

establishing the claim.
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The next result shows the solution of the quadratic optimization problem ΠΣ(T )(1η) (see (2.17))
for our model.

Lemma 5.2. The unique solution of ΠΣ(T )(1η) satisfies

ã = 1η, I = {1, . . . , Pη}, J = ∅.

The proof of Lemma 5.2 is given in Appendix.

Let δu(L) = Lu−2 for L > 0 and denote into two

M(u, L) := P {∃ t ∈ [T − δu(L), T ] : W (t) > u1η} ,
m(u, L) := P {∃ t ∈ [0, T − δu(L)] : W (t) > u1η} .

Clearly,

M(u, L) ≤ P {∃ t ∈ [0, T ] : W (t) > u1η} ≤ M(u, L) + m(u, L).

We will prove that m(u, L) is negligible with respect to M(u, L).

Lemma 5.3. For fixed L > 0, as u → ∞

M(u, L) ∼ H(L) P {W (T ) > u1η} ,

where λ = Σ−1(T )1η, and the constant H(L) is given by

H(L) = e−
L
2
λ⊤λ

∫
RPη

P {∃ t ∈ [0, L] : λB∗(t) > x} e
∑Pη

i=1 xidx, (5.15)

where B∗(t) ∈ RPη is a Brownian motion with independent components.

Remark 5.3. In view of Lemma 5.2 and Lemma 2.5 (see Appendix) it follows that λ > 0.

Proof of Lemma 5.3. Let φt denote the pdf of W (t). We can assume that u is large enough to
ensure that i(T − δu(L)) = i(T ). Then,

M(u, L) = u−Pη

∫
RPη

J(u, T, L,x)φT−δu(L)

(
u1η −

x

u

)
dx, (5.16)

where

J(u, T, L,x) := P
{
∃ t ∈ [T − δu(L), T ] : W (t) > u1η | W (T − δu(L)) = u1η −

x

u

}
.

Next, using Proposition 5.3 we can rewrite the probability J(u, T, L,x) as follows

J(u, T, L,x) = P
{
∃ t ∈ [T − δu(L), T ] : W (t) −W (T − δu(L)) >

x

u

}
= P

{
∃ t ∈ [T − δu(L), T ] : B∗(t) −B∗(T − δu(L)) >

x

u
+ c(t− T + δu(L))

}
= P

{
∃ t ∈ [0, δu(L)] : B∗(t) >

x

u
+ c t

}
= P

{
∃ t ∈ [0, L] : B∗(t) > x +

c t

u

}
,
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where B∗(t) ∈ RPη is a Brownian motion with independent components. We have

P
{
∃ t ∈ [0, L] : B∗(t) > x + c tu−1

}
−−−→
u→∞

P {∃ t ∈ [0, L] : B∗(t) > x}

for almost all x ∈ RPη .

Next, let us consider the factor φT−δu(L). We have

φT−δu(L)

(
u1η −

x

u

)
= (2π)−Pη/2 |Σ(T − δu(L))|−1/2 exp(−G(u, T, L,x)),

where

G(u, T, L,x) := −1

2

(
u1η −

x

u
+ c(T − δu(L))

)⊤
× Σ−1(T − δu(L))

(
u1η −

x

u
+ c(T − δu(L))

)
Using

Σ−1(T − δu(L)) = Σ−1(T ) − δu(L) Σ−2(T ) + o
(
δ2u(L)

)
,

we find that the prefactor converges to (2π)−Pη/2 |Σ(T )|−1/2, and we can focus on the asymptotics
of the exponent. We have

B(u, T, L,x) =
1

2
(u1η − cT )⊤ Σ−1(T ) (u1η + cT )

+ x⊤Σ−1(T )1η −
L

2
1⊤η Σ−2(T )1η + O(L/u),

where we used Proposition 5.4. Hence, as u → ∞,

φT−δu(L)(u1η − x/u) ∼ φT (u1η) ex
⊤λ e−

L
2
λ⊤λ.

Finally, we can bound the pdf under the integral (5.16), for all large enough u, as follows:

φT−δu(L)(u1η − x/u)

φT (u1η)
≤ A exp

(
x⊤λx(ε)

)
=: φ̄(x), (5.17)

where λx(ε) := λ + sign(x) ε > 0 for all small enough ε and

A := max
t∈[(τη+T )/2,T ]

√
|Σ(T )|
|Σ(t)|

× max
t∈[(τη+T )/2,T ]

y,z∈[−1,1]⊂RPη

exp
(
y⊤Σ−1(t)(1η + z)

)
< ∞

In proving (5.17) we used the fact that both cLu−1 and cTu−1 belong to ∈ [−1,1] for large
enough u. The constant A is clearly finite since Σ(t) is continuous.

To find the asymptotics of M(u, L), we apply dominated convergence theorem. The probability
under the integral J(u, T, L,x) can bounded as follows. For x ∈ RPη , define

F+(x) := {i : xi > 0} ,

and two associated sets

SF :=
{
x ∈ RPη : F+(x) = F

}
, C :=

x ∈ Rd :
∑

i∈F+(x)

(xi + ε) < 0

 .
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By Piterbarg inequality (see, e.g., [19, Theorem 8.1]) for each x ∈ Cc we have

J(u, T, L,x) ≤ P {∃ t ∈ [0, L] ∀i ∈ F : B∗
i (t) > xi + ε}

≤ P

∃ t ∈ [0, L] :
∑

i∈F+(x)

B∗
i (t) >

∑
i∈F+(x)

(xi + ε)


≤ C

 ∑
i∈F+(x)

(xi + ε)

γ

exp

−δ
∑

i∈F+(x)

(xi + ε)2

 =: R̄(x)

for some positive constants C, γ, δ and ε independent of x. Thus, it is enough to show that
the integral

∫
RPη R̄(x) φ̄(x)dx is finite. Setting

CF :=

{
x ∈ RPη : x > 0,

∑
i∈F

(xi + c) < 0

}
,

we obtain∫
RPη

R̄(x) φ̄(x) dx

= CA
∑

F⊂{1,...,Pη}

[∫
SF \C

(∑
i∈F

(xi + ε)

)γ

exp

(
x⊤λx(ε) − δ

∑
i∈F

(xi + ε)2

)
dx

+

∫
SF∩C

exp
(
x⊤λx(ε)

)
dx

]
=: CA

∑
F⊂{1,...,Pη}

[
A1 + A2

]
.

The integral A1 may be estimated as follows:

A1 ≤ exp

(
− 1

4δ
∥λF + ε1F ∥22 − ε1⊤F (λF + ε1F )

)

×
∫
{xF>0}\CF

exp

(
−δ

∥∥∥∥xF + ε1F − 1

2δ
λx,F (ε)

∥∥∥∥2
2

)
∥xF + ε1F ∥γ1 dxF

×
∫
xFc≤0Fc

exp
(
x⊤
F cλx,F c(ε)

)
dxF c ,

where ∥ · ∥p denotes the ℓp norm. Next, we bound A2 as follows:

A2 ≤
∫
xc
F≤0c

F

exp
(
x⊤
F c λx,F c(ε)

)
dx×

∫
CF

dxF .

Combining the two bounds together, we obtain∫
RPη

R̄(x) φ̄(x) dx ≤ CA
∑

S⊂{1,...,Pη}

∏
i∈F c

(λi + ε)−1

× exp

(
− 1

4δ
∥λF + ε1F ∥22 − ε1⊤F (λF + ε1F )

)
A3(F ),
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where

A3(F ) :=

∫
R|F |

exp

(
−δ

∥∥∥∥xF + ε1F − 1

2δ
λx,F (ε)

∥∥∥∥2
2

)
∥xF + ε1F ∥γ1 dxF +

ε|S|

|S|!
< ∞

for all δ > 0.

Hence, by the dominated convergence theorem, it follows that as u → ∞

M(u, L) ∼ u−Pη φT (u1η) e−
L
2
λ⊤λ

∫
RPη

P {∃ t ∈ [0, L] : B∗(t) > x} e−x⊤λdx

=
φT (u1η) e−

L
2
λ⊤λ∏Pη

i=1 λi

u−Pη

∫
RPη

P {∃ t ∈ [0, L] : λB∗(t) > x} e−
∑Pη

i=1 xi dx,

(5.18)

which, together with the following asymptotic formula (see [21, Lemma 4.4])

P {W (T ) > u1η} ∼ u−Pη∏Pη

i=1 λi

φT (u1η), u → ∞, (5.19)

provides us the claimed assertion.

Lemma 5.4. For H(L) defined in (5.15) we have

HPη ,1/µ0(T ) = lim
L→∞

H(L) ∈ (0,∞).

Proof of Lemma 5.4. Applying the Fubini-Tonelli theorem yields

H(L) = e−
L
2
λ⊤λ

∫
RPη

P
{
∃ t ∈ [0, L] : λB∗

η(t) > x
}
e
∑Pη

i=1 xidx

= E

{
e−λ⊤B∗

η(L)−L
2
λ⊤λ+λ⊤B∗

η(L)

∫
RPη

I(∃ t ∈ [0, L] : λB∗
η(t) > x)e

∑Pη
i=1 xidx

}

= E

{
e−λ⊤B∗

η(L)−L
2
λ⊤λ

∫
RPη

I(∃ t ∈ [0, L] : λ
(
B∗

η(t) −B∗
η(L)

)
> x)e

∑Pη
i=1 xidx

}

= E

{∫
RPη

I(∃ t ∈ [0, L] : λ
(
B∗

η(t) −B∗
η(L)

)
− λ2(t− L) > x)e

∑Pη
i=1 xdx

}

=

∫
RPη

P
{
∃ t ∈ [0, L] : λB∗

η(t) − λ2t > x
}
e
∑Pη

i=1 xidx,

where the second to last step follows from [23, Lem B.6] and the last is a direct consequence of
the Brownian motion increments’ properties. Hence, H(L) is an increasing function. Using the
following inequality, which follows from Proposition 5.7,

(H(L) − ε)P
{
BΓ(T1) > u1i(T1)

}
≤ M(u, L)

≤ P
{
∃ t ∈ [0, T ] : BΓ(t) > u1i(t)

}
≤ 2Pη P

{
BΓ(T1) > u1i(T1)

}
for any small positive ε and large enough u, we obtain that

H(L) ≤ 2Pη + ε < ∞
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implies that H(L) is bounded. In order to complete the proof it remains to apply the monotone
convergence theorem and notice that according to Proposition 5.5

λ =
1

µ0(t)
1η.

Lemma 5.5. For L > 0 and large enough u,

m(u, L)

P {W (T ) > u1η}
≤ C1e

−C2L

for some positive constants C1, C2, which do not depend on u or L.

Proof of Lemma 5.5. Applying Proposition 5.7

m(u, L)

P {W (T ) > u1η}
≤ C

P {W (T − δu(L)) > u1η}
P {W (T ) > u1η}

= C
P {W (T ) > a(u, L, T )}

P {W (T ) > u1η}
,

where C defined in Proposition 5.7 and

a(u, L, T ) :=

√
T

T − δu(L)

(
u1η + c(T − δu(L))

)
− cT.

Hence, regarding (5.19), for any ε > 0 and large enough u

m(u, L)

P {W (T ) > u1η}
≤ C (1 + ε)

(
T

T − δu(L)

)Pη/2 φT (a(u, L, T ))

φT (u1η)

≤ C (1 + ε)1+Pη/2 φT (a(u, L, T ))

φT (u1η)
.

(5.20)

It remains to bound the quotient φT (a(u, L, T ))/φT (u1η). To this end, let us first find the
asymptotics of a(u, L, T ), as u → ∞

a(u, L, T ) = u1η

(
1 − δu(L)

T

)−1/2

− cT

(
1 −

(
1 − δu(L)

T

)1/2
)

∼ u1η

(
1 +

L

2Tu

)
+ O(Lu−2).

In this computation we used that δu(L) = Lu−2. Therefore,

(
a(u, L, T ) + cT

)⊤
Σ−1(T )

(
a(u, L, T ) + cT

)
= (u1η + cT )⊤ Σ−1(T ) (u1η + cT ) +

L

T
1⊤η Σ−1(T )1η + O(Lu−1),

which yields
φT (a(u, L, T ))

φT (u1η)
≤ C exp

(
−L

2T
1⊤η Σ−11η

)
.

Combining this with (5.20), we obtain the desired result.
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We can now proceed to the proof of Theorem 5.3.

Proof of Theorem 5.3. Using Lemma 5.5, we obtain that for any positive L and large enough u

M(u, L)

P {W (T ) > u1η}
≤ P {∃ t ∈ [0, T ] : W (t) > u1η}

P {W (T ) > u1η}

≤ M(u, L)

P {W (T ) > u1η}
+

m(u, L)

P {W (T ) > u1η}
,

where the last term on the right is at most C1 exp(−C2L) with some positive constants C1 and
C2. Hence, letting u → ∞ and using Lemma 5.3 we obtain that

H(L) ≤ lim inf
u→∞

P {∃t ∈ [0, T ] : W (t) > u1η}
P {W (T ) > u1η}

≤ lim sup
u→∞

P {∃t ∈ [0, T ] : W (t) > u1η}
P {W (T ) > u1η}

≤ H(L) + C1e
−C2L.

Pushing further L → ∞ and applying Lemma 5.4 we obtain uisng that C2 > 0

HPη ,1/µ0(T ) ≤ lim inf
u→∞

P {∃t ∈ [0, T ] : W (t) > u1η}
P {W (T ) > u1η}

≤ lim sup
u→∞

P {∃t ∈ [0, T ] : W (t) > u1η}
P {W (T ) > u1η}

≤ HPη ,1/µ0(T ).

Hence, the claim follows.

Proof of Corollary 5.1. Let us define N∗
i = essinf(Ni) and take Ñ1, Ñ2 ∈ Nη such that Ñ1 ≥ Ñ2

and Ñ1 ̸= Ñ2. Then we can show the following inequality

P
{
∃ t ∈ [0, T ] : W (t) > u1η

∣∣∣ N = Ñ1

}
≤ P

{
∃ t ∈ [0, T ] : W (t) > u1η

∣∣∣ N = Ñ2

}
(5.21)

To show (5.21) it is enough to consider Ñ1, Ñ2 such that

Ñ1 − Ñ2 = ej

for some j ∈ {1, . . . , η}, where ej is the j-th basis vector in Nη. It is easy to see that the process
W (t) | N = Ñ2 may be obtained from W (t) | N = Ñ1 by deleting some branches. Thus, the
inequality (5.21) follows.

Hence,

P {N = N∗} P {∃ t ∈ [0, T ] : W (t) > u1η | N = N∗}

≤ P {∃ t ∈ [0, T ] : W (t) > u1η}

≤ P {N = N∗} P {∃ t ∈ [0, T ] : W (t) > u1η | N = N∗}

+

η∑
i=1

P {N ≥ N∗ + ei} P {∃ t ∈ [0, T ] : W (t) > u1η | N = N∗ + ei} ,
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and the claim follows from Theorem 5.3 and the fact that

P {W (T ) > u1η | N = N∗ + ei} = o (P {W (T ) > u1η | N = N∗}) .

To show the latter, we use Proposition 5.6 as follows. Combining

(Pη | N = N∗ + ei) =

(
1 +

1

N∗
i

)
(Pη | N = N∗) ,

with

(µ0(T ) | N = N∗ + ei) = (µ0(T ) | N = N∗) +

i∑
l=1

(τl − τl−1)

η∏
j=l
j ̸=i

Nj

= (µ0(T ) | N = N∗) +
1

Ni

i∑
l=1

(τl − τl−1)

η∏
j=l

Nj

≤
(

1 +
1

Ni

)
(µ0(T ) | N = N∗) ,

we obtain (
Pη

µ0(T )

∣∣∣∣N = N∗ + ei

)
≤
(

Pη

µ0(T )

∣∣∣∣N = N∗
)
,

and invoke Proposition 5.6.

Proof of Corollary 5.2. Using Theorem 5.3, we obtain

P
{
u2(T − T (u)) ≥ x

∣∣∣ T (u) ≤ T − y

u2

}
=

P
{
T (u) ≤ T − xu−2

}
P {T (u) ≤ T − yu−2}

∼
HPη ,1/µ0(T−yu−2) P

{
W (T − xu−2) > u1η

}
HPη ,1/µ0(T−xu−2) P {W (T − yu−2) > u1η}

∼
P
{
W (T − xu−2) > u1η

}
P {W (T − yu−2) > u1η}

.

Applying Proposition 5.6, we find that the latter is asymptotically equivalent to

∼ µ
Pη−1/2
0 (T − yu−2)

∏η
v=1 µ

(Pv−Pv−1)/2
v (T − xu−2)

µ
Pη−1/2
0 (T − yu−2)

∏η
v=1 µ

(Pv−Pv−1)/2
v (T − yu−2)

× exp

(
−(u + c(T − xu−2))2Pη

2µ0(T − xu−2)
+

(u + c(T − yu−2))2Pη

2µ0(T − yu−2)

)
.

Since the pre-exponential factor clearly tends to 1, it remains to compute the asymptotics of the
exponent. We have

− (u + c(T − xu−2))2Pη

2µ0(T − xu−2)
+

(u + c(T − yu−2))2Pη

2µ0(T − yu−2)

∼ − (u + cT )2Pη

2µ0(T − xu−2)µ0(T − yu−2)

[
µ0(T − yu−2) − µ0(T − xu−2)

]
.

It thus remains to note that

µ0(T − yu−2) − µ0(T − xu−2) ∼ u−2(x− y) and µ0(T − xu−2), µ0(T − yn−2) ∼ µ0(T )

to conclude the proof.
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5.4.5 Proof of Theorem 5.4

We note that

P {∃ i ∈ {1, . . . ,M}, t ∈ [0, T ] : Wi(t) > u1ηi}

≥
M∑
i=1

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} −
M∑

i,j=1
i ̸=j

P

{
∃ t1 ∈ [0, T ] : Wi(t1) > u1ηi

∃ t2 ∈ [0, T ] : Wj(t2) > u1ηj

}

and

P {∃ i ∈ {1, . . . ,M}, t ∈ [0, T ] : Wi(t) > u1ηi} ≤
M∑
i=1

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} .

Using that Wi are independent,

P
{
∃ t1, t2 ∈ [0, T ] : Wi(t1) > u1ηi , Wj(t2) > u1ηj

}
= P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} P

{
∃ t ∈ [0, T ] : Wj(t) > u1ηj

}
+ o

(
P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} + P

{
∃ t ∈ [0, T ] : Wj(t) > u1ηj

})
.

We find

P {∃ i ∈ {1, . . . ,M}, t ∈ [0, T ] : Wi(t) > u1ηi} ∼
M∑
i=1

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} .

Finally, Lemma 5.1 implies that

∑
i ̸∈A

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi} = o

(∑
i∈A

P {∃ t ∈ [0, T ] : Wi(t) > u1ηi}

)
,

establishing the proof.

5.5 Appendix

Proof of Proposition 5.2. Using mathematical induction, we shall show that for all i ∈
{1, . . . , N} holds

Bγ(τi) = B∗
0(τ1) +

i−1∑
j=1

(B∗
j )(γ mod Pj)+1(τj+1 − τj). (5.22)

Since for i = 1 the claim is clear, assuming it holds for i = k, we have for i = k + 1

Bγ(τk+1) =
(
B̃Γ

)
(γ mod Pk)+1

(τk+1) (5.23)

=

B̃Γ(τk)
...

B̃Γ(τk)


(γ mod Pk)+1

+
(
B∗

k

)
(γ mod Pk)+1

(τk+1 − τk). (5.24)
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For the first term we haveB̃Γ(τk)
...

B̃Γ(τk)


(γ mod Pk)+1

=
(
B̃Γ(τk)

)(
(γk mod Pk) mod Pk−1

)
+1

=
(
B̃Γ(τk)

)
(γk mod Pk−1)+1

= Bγ(τk).

By the induction hypothesis,

Bγ(τk) = B∗
0(τ1) +

k−1∑
j=1

(
B∗

j

)
(γ mod Pj)+1

(τj+1 − τj). (5.25)

Subsume the second term of (5.23) into the sum (5.25) and note that this conclues the proof of
this assertion for t = τk+1. Similarly, if t ∈ (τ1, T ], then

Bγ(t) =

B̃Γ(τi(t))
...

B̃Γ(τi(t))


(γ mod Pi(t))+1

+
(
B∗

k

)
(γ mod Pi(t))+1

(t− τi(t)),

and therefore

Bγ(t) = B∗
0(τ1) +

i(t)−1∑
j=1

(
B∗

j

)
(γ mod Pj)+1

(τj+1 − τj) +
(
B∗

i(t)

)
(γ mod Pi(t))+1

(t− τi(t)).

Thus, the claim (5.5) follows, justifying that Bγ is a Brownian motion.

Consider now the assertion (5.6). Let t1 ≤ τκ(γ1,γ2). Using that Bγ1(t) = Bγ2(t) for any
t ≤ τκ(γ1,γ2), we have

Bγ1(t1) = Bγ2(t1).

Since Bγ2 is a Brownian motion, we obtain

Cov(Bγ1(t1), Bγ2(t2)) = Cov(Bγ2(t1), Bγ2(t2)) = min{t1, t2} = min{t1, t2, τκ(γ1,γ2)}.

The same holds in the case t2 ≤ τκ(γ1,γ2). In the case τκ(γ1,γ2) < t1, t2, using (5.5), we can see
that

Bγ1(t1) = B∗
0(τ1) +

i(t1)−1∑
j=1

(
B∗

j

)
(γ1 mod Pj)+1

(τj+1 − τj)

+
(
B∗

i(t1)

)
(γ1 mod Pi(t1)

)+1
(t1 − τi(t1)).

Next, we split the middle sum at the branches’ separation point κ(γ1, γ2) and use the fact that

B∗
0(τ1) +

κ(γ1,γ2)−1∑
j=1

(
B∗

j

)
(γ1 mod Pj)+1

(τj+1 − τj) = Bγ1(τκ(γ1,γ2))

to obtain
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Bγ1(t1)Bγ1(τκ(γ1,γ2)) +

i(t1)−1∑
j=κ(γ1,γ2)

(
B∗

j

)
(γ1 mod Pj)+1

(τj+1 − τj)

+
(
B∗

i(t1)

)
(γ1 mod Pi(t1)

)+1
(t1 − τi(t1)).

By the same reason,

Bγ2(t2) = Bγ2(τκ(γ1,γ2)) +

i(t2)−1∑
j=κ(γ1,γ2)

(
B∗

j

)
(γ2 mod Pj)+1

(τj+1 − τj)

+
(
B∗

i(t2)

)
(γ2 mod Pi(t2)

)+1
(t2 − τi(t2)).

We have used the fact that for all indices j ≥ κ(γ1, γ2) holds (γ1 mod Pj) ̸= (γ2 mod Pj), so the
sums

i(t1)−1∑
j=κ(γ1,γ2)

(
B∗

j

)
(γ1 mod Pj)+1

(τj+1 − τj) +
(
B∗

i(t1)

)
(γ1 mod Pi(t1)

)+1
(t1 − τi(t1))

and
i(t2)−1∑

j=κ(γ1,γ2)

(
B∗

j

)
(γ2 mod Pj)+1

(τj+1 − τj) +
(
B∗

i(t2)

)
(γ2 mod Pi(t2)

)+1
(t2 − τi(t2))

are independent. Additionally, each of them is independent of Bγ1(τκ(γ1,γ2)), which is equal to
Bγ2(τκ(γ1,γ2)). Hence,

Cov(Bγ1(t1), Bγ2(t2)) = Cov(Bγ1(τκ(γ1,γ2)), Bγ2(τκ(γ1,γ2)))

= Var(Bγ1(τκ(γ1,γ2))) = τκ(γ1,γ2).

This establishes (5.6).

Proof of Proposition 5.5. We are going to prove the claim of the theorem by induction in t ∈
{τ0, . . . , τη}. The case t = τ0 is clear. Assume that the claim is true for t = τk. We claim that
the eigenvalues of Σ(τk) . . . Σ(τk)

...
...

Σ(τk) . . . Σ(τk)


are the eigenvalues of Σ(τk) multiplied by Nk. Moreover, they are of at least the same multi-
plicity. Indeed, for any eigenvalue µ and a corresponding eigenvector v ∈ RPk−1 of Σ(τk) we can
construct a vector v∗ = (v⊤, . . . ,v⊤)⊤ ∈ RPk , which satisfiesΣ(τk) . . . Σ(τk)

...
...

Σ(τk) . . . Σ(τk)


v

...
v

 =

NkΣ(τk)v
...

NkΣ(τk)v

 =

Nkµv
...

Nkµv

 = Nk µv∗.

In particular, it means that as 1k−1 is an eigenvector of Σ(τk) with the eigenvalue µ0(τk), then
1k is an eigenvector of the matrix mentioned above with the corresponding eigenvalue Nk µ0(τk).
Since

rank

Σ(τk) . . . Σ(τk)
...

...
Σ(τk) . . . Σ(τk)

 = rank Σ(τk) = Pk−1,
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0 is an eigenvalue of the matrix mentioned above of multiplicity Pk−Pk−1. Using Proposition 5.4
for any eigenvalue µv(τk) of Σ(τk) we can find an eigenvalue µv(τk+1) of Σ(τk+1) as follows

µv(τk+1) = Nkµv(τk) + (τk+1 − τk)

= (τk+1 − τk) + Nk

(τk − τk−1) +

k−1∑
l=v+1

(τl − τl−1)

k−1∏
j=l

Nj


= (τk+1 − τk) + Nk(τk − τk−1) +

k−1∑
l=v+1

(τl − τl−1)
k∏

j=l

Nj

= (τk+1 − τk) +

k∑
l=v+1

(τl − τl−1)

k∏
j=l

Nj .

The multiplicity of µv(τk+1) equals to the multiplicity of µv(τk), i.e. Pv − Pv−1. In particular,
for i = 0 we have that µ0(τk+1) has exactly one eigenvector 1k. Additionally, Σ(τk+1) has the
eigenvalue τk+1−τk with multiplicity Pk−Pk−1. Hence, the claim follows for the matrix Σ(τk+1).
Finally, using Proposition 5.4 we can find eigenvalues and eigenvectors of Σ(t) if we know them
for Σ(τi(t)).

Proof of Proposition 5.6. Using that λ = Σ−11η and Proposition 5.5 we obtain

λ =
1

µ0(T )
1η, 1⊤η Σ−1(T )1η =

Pη

µ0(T )
.

Additionally, using Proposition 5.5 we know that

|Σ(T )| = µ0(T )

η∏
v=1

µPv−Pv−1
v (T ).

Hence, the claim follows from (5.19):

P {BΓ(T ) − cT1η > u1η} ∼ 1∏Pη

i=1 λi

u−PηφT (u1η)

=
u−Pη∏Pη

i=1 λi

1

(2π)Pη/2 |Σ(T )|1/2
exp

(
−1

2
(u + cT )21⊤η Σ−1(T )1η

)
.

Recall that φ(T ) stands for the pdf of BΓ(T ) − cT1η.

Proof of Lemma 5.2. Note that any element γ ∈ Γ has unique representation of the following
form

γ =

η∑
i=1

aiPi−1,

where ai ∈ {0, 1, . . . , Ni − 1}. Hence, the map

γ 7→ (a1(γ), a2(γ), . . . , aη(γ))

is a bijection. Let us introduce the following class of permutations on Γ:

πj,b,c(γ) = γ′, i ∈ {1, 2, . . . , η}, b, c ∈ {0, 1, . . . , Ni − 1},
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where for any i ∈ {1, 2, . . . , η}

ai(γ
′) =


ai(γ), if i ̸= j,

aj(γ), if i = j, aj(γ) ̸= c and aj(γ) ̸= b,

b, if i = j and aj(γ) = c,

c, if i = j and aj(γ) = b.

Next, define a new Gaussian random vector X̃(j, b, c) = (X̃0, . . . , X̃Pη−1) ∈ RPη

X̃i = Bπj,b,c(i)(T )

and denote its covariance function by Σ(j, b, c). Consider a new quadratic programming problem
(see Lemma 2.5)

ΠΣ(j,b,c)(1η).

Define its corresponding sets by I(j, b, c) and J(j, b, c). Using that our vector X̃(j, b, c) is a
permutation of BΓ(T ),

I(j, b, c) = πj,b,c(I).

On the other hand, from the definition of πj,b,c we have that for any i ∈ {1, . . . , η}

ai(γ1) = ai(γ2) ⇐⇒ ai(πj,b,c(γ1)) = ai(πj,b,c(γ2)).

Using the formula for γ in terms of ai(γ) we obtain that

γ1 = γ2 mod Pi ⇐⇒ ∀ l ∈ {1, 2, . . . , i} al(γ1) = al(γ2).

Combining these two facts, we find

γ1 = γ2 mod Pi ⇐⇒ πj,b,c(γ1) = πj,b,c(γ2) mod Pi,

which implies that

κ(γ1, γ2) = κ(πj,b,c(γ1), πj,b,c(γ2)).

Consequently, we have

Cov(X̃γ1 , X̃γ2) = Cov(Bπj,b,c(γ1)(T ), Bπj,b,c(γ2)(T ))

= min{T, τκ(πj,b,c(γ1),πj,b,c(γ2))} = min{T, τκ(γ1,γ2)} = Cov(Bγ1(T ), Bγ2(T )).

Hence Σ(j, b, c) = Σ(T ), and
I(j, b, c) = I.

It means that for any j ∈ {1, . . . , η}, b, c ∈ {0, . . . , Nj}

πj,b,c(I) = I.

Finally, let us notice that for any γ1, γ2 ∈ Γ we can find a sequence of the permutations of the
class mentioned above which send γ1 into γ2:

γ2 = π1,a1(γ1),a1(γ2)(π2,a2(γ1),a2(γ2)(· · ·πη,aη(γ1),aη(γ2)(γ1) · · · )).

This implies that set I can either be empty, or contain all elements of Γ. Since by Lemma 2.5
it cannot be empty, the claim follows.
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Chapter 6

Parisian ruin with power-asymmetric
variance near the optimal point with
application to many-inputs
proportional reinsurance

This chapter investigates the Parisian ruin probability for a class of Gaussian processes with
power-asymmetric behavior of the variance near the unique optimal point. We derive the exact
asymptotics as the initial capital tends to infinity and extend the previous result [1] to the case
when the length of Parisian interval is of Pickands scale. As a primary application, we extend
the recent result [2] on the many inputs proportional reinsurance fractional Brownian motion
risk model to the Parisian ruin.

Pavel Ievlev, Parisian ruin with power-asymmetric variance near the optimal point with
application to many-inputs proportional reinsurance, Stochastic Models 40 (2024), no. 3,
pp. 518–535. MR4777226
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Parisian ruin with power-asymmetric variance near the optimal point

6.1 Introduction

Consider the following reinsurance scheme: d companies share premiums and one claim process
proportionally. Suppose that the risk process R(t) is composed of a large number of i.i.d. sub-
risk processes R(i)(t) representing independent businesses, and let each R(i) be driven by a
fractional Brownian motion BH(t). That is, let

RN (t) =

N∑
i=1

R(i)(t), where R(i)(t) = m + µt− σB
(i)
H (t),

where B
(i)
H , i ≥ 1 are independent fractional Brownian motions and m,µ,σ ∈ Rd. In a recent

contribution [2], the authors derived the exact asymptotics of the simultaneous ruin probability

P {∃t ∈ [0, T ] : RN (t) < 0} , N → ∞

in the case of d = 2. In the present work we shall concentrate on the simultaneous Parisian ruin
probability

Π̃(N) = P
{
P[0,S],[0,TN ](RN ) < 0

}
, where PE,F (Z) = max

i=1,...,d
sup
t∈E

inf
s∈F

Zi(t + s) (6.1)

for arbitrary d.

Parisian stopping times have been first introduced in relation to barrier options in mathematical
finance, see [3], and since then attracted substantial interest. For the applications to actuarial
risk theory, we refer to [4], where risk process is treated as a surplus process of an insurance
company with initial capital u.

Parisian ruin is recognized if the process has spent a sufficient
amount of time above the threshold.

In opposition to the well-studied classical ruin, when the failure is recognized at the moment
of surplus hitting zero, the Parisian ruin is recognized only if the surplus process has spent a
sufficient, pre-specified amount of time below zero. We refer to [5, 6, 7, 8, 9] and the references
therein for analysis of Parisian ruin in the one-dimensional Lévy surplus model.

In the univariate Gaussian setup, Parisian ruin has been investigated in [10] for self-similar Gaus-
sian processes and in [1] for general Gaussian processes, satisfying some standard assumptions
(see [11]). Another interesting univariate case is of Parisian ruin over discrete sets. In [12], the
authors have proved that for the Brownian motion and equidistant grid the asymptotics differs
from the continuous one by some constant factor.

There are many possible extensions of the notion of the Parisian ruin to multivariate risk pro-
cesses, such as simultaneous Parisian ruin, when all the components of a multivariate process
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should plunge below zero at the same time and remain there long enough for the ruin to be at-
tested. This problem has recently been studied in [13] for the case when the risk process consists
of two correlated Brownian motions. Another possible extension is the joint or non-simultaneous
Parisian ruin, when ruin is attested if all the components experience Parisian ruin during some
interval of time, but not necessarily at the same time. This problem has been studied in [14],
also for the bivariate Brownian motion with ρ ∈ (−1, 1). A third possible extension would be the
notion of “at least one” ruin, suggested in the classical ruin context in [2]: the ruin is declared
if either of the processes has a Parisian ruin over time.

In this paper, we derive the exact asymptotics as u → ∞ of the one-dimensional1 Parisian ruin
probability

Π(u) = P
{
P[−S,S],[0,Tu] (Z) > u

}
for Tu → 0 at some specified rate and a class of Gaussian processes with correlation structure

Corr(Z(t), Z(s)) = 1 −D|t− s|α + o (|t− s|α)

and a unique optimal point t∗ = 0 of the variance with asymmetric behaviour near this point:

σ(t) = 1 −A±|t|γ±
(

1 + o(1)
)

as t → ±0,

from which we further derive the exact asymptotics of the many-inputs Parisian ruin probabil-
ity (6.1).

The asymptotic behaviour of Π(u) for such class of processes is of interest by itself. Similar
problems have recently been studied in [10] and [1]. Our findings account for the previously
discarded type of the Talagrand case with T > 0 (see Section 6.2) and discover the new type of
asymptotics therein:

Π(u) = e−min{A−T γ− ,A+T γ+}Ψ(u),

which rather surprisingly happens only if γ+ < γ−, α and does not happen if γ− < γ+, α. Here
Ψ denotes the survival function of a standard normal random variable N(0, 1).

The paper is organized as follows. In Section 6.2 we present our main findings. Theorem 6.1
provides the exact asymptotics of Π(u) for the general Gaussian process with power-asymmetric
behaviour of the variance near the optimal point and under some assumption on the speed Tu → 0
convergence. It covers the previously unaccounted for case when the size of Parisian interval is
equivalent to the Pickands scale (see Section 6.3.1) of the process. Corollary 6.1 contains the
exact asymptotics of the many-inputs Parisian ruin probability. The proof of Theorem 6.1 is
presented in a separate Section 6.3. All known results and technical details are relegated to the
Appendix.

6.2 Main results

In this section, we first explain how to rewrite many-inputs ruin probability in a form suitable
for applying Theorem 6.1, then specify the assumptions under which the general theorem works
and conclude with deriving the exact asymptotics of the many-inputs proportional reinsurance
ruin probability (6.1).

Observe that by properties of Gaussian distribution

RN
d
= mN + µNt− σ

√
NBH(t),

1By one-dimensional we mean that the process Z takes values in Rd with d = 1.
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we can rewrite the ruin probability (6.1) as

Π̃[0,S](N) = P
{
P[0,S],[0,TN ](Z) >

√
N
}
, where Z(t) =

BH(t)

D(t)
, D(t) = max

i=1,...,d
(mi + µit).

Next, we state a result concerning Parisian ruin probabilities

Π(u) = P
{
PE,[0,Tu](Z) > u

}
for some large class of Gaussian processes and then apply it to Π̃[0,S](N), rewritten in the latter
form.

6.2.1 Assumptions

Let E be a compact subset of R, containing point 0 in its interior, and let Z(t), t ∈ E be a centered
Gaussian process with a.s. continuous sample paths satisfying the following two assumptions:

Assumption A1 The variance function σZ of the Gaussian process Z attains its maximum on
E at the unique point τ̂ = 0. Further, there exist positive constants γ± and A± such that

σZ(t) = 1 −A±|t|γ± + o(|t|γ±) as t → ±0. (6.2)

Assumption A2 There exists some positive constant α ∈ (0, 2] such that

Corr (Z(t), Z(s)) = 1 −D |t− s|α + o (|t− s|α) as t, s → 0.

Note that the majority of standard examples of continuous Gaussian processes on [0, 1], such as
(fractional) Brownian motion or Ornstein-Uhlenbeck process satisfy the assumptions trivially.
Perhaps the simplest example of a process satisfying them in a non-trivial way is an Ornstein-
Uhlenbeck process multiplied by a continuous function σ which satisfies (6.2).

Remark 6.1. Note that it follows from A2 that there exists such δ > 0 that

E

{(
Z(t) − Z(s)

)2}
< C|t− s|α

for all t, s < δ.

As it turns out, there are two numbers

ν = min{α, γ−, γ+} and γ = max{γ−, γ+}

which determine the type of the asymptotics, but before proceeding to that, we also need the
following assumption on the convergence rate of Tu → 0:

Assumption B Tu = Tu−2/ν for some T ∈ [0,∞).

Next, we introduce two well-known and important constants in the theory of Gaussian extremes,
see [15, 10, 1]. Define for T ≥ 0 and α ∈ (0, 2] the generalized Pickands and Piterbarg constants

HP
α (T ) = lim

λ→∞

HP
α,0(λ, T )

λ
and HP

α,h(T ) = lim
λ→∞

HP
α,h(T ),

where

HP
α,h(T ) = E exp

(
sup

t∈[−λ,λ]
inf

s∈[0,T ]

(√
2Bα/2(t + s) − |t + s|α − h(t + s)

))
for such continuous h that the limit exists. We are in a position to formulate our main theorem.
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Theorem 6.1. Let (Z(t))t≥0 be a centered Gaussian process satisfying assumptions A1 and
A2, and let Tu be a positive measurable function of u satisfying assumption (B). Then

In the Pickands case ν = α ̸= γ we have

Π(u) = CS HP
α (D1/αT )u2/ν−2/γ Ψ(u)

(
1 + o(1)

)
,

with

CS = A
−1/γ+
+ D1/αΓ

(
1

γ+
+ 1

)
1γ=γ+ + A

−1/γ−
− D1/αΓ

(
1

γ−
+ 1

)
1γ=γ− .

In the Piterbarg case ν = α = γ we have

Π(u) = HP
α,h(D1/αT )Ψ(u)(1 + o(1)),

where h(t) = A−D
−1/α|t|γ−1t≤0 + A+D

−1/α|t|γ+1t≥0.

In the Talagrand-1 case γ = ν ̸= α

Π(u) = CΨ(u)
(

1 + o(1)
)
, C =

{
1, γ+ ≥ γ−,

exp(−min{A−T
γ− , A+T

γ+}), γ+ < γ−.

Now we proceed with our initial problem, to which end we first study the behaviour of
VarBH(t)/D(t). Note that the derivative σ′ of the variance function

σ(t) =
tH

D(t)
, D(t) = max

i=1,...,d
(mi + µit)

changes its sign exactly once, since

σ′(t) =
tH−1

D2(t)
G(t), G(t) = HD(t) − tD′(t),

where G(t) is monotone and decreasing, G(0) > 0 and G(t) → −∞ as t → ∞. Since σ′ must
change sign (possibly in a discontinuous manner) at the optimal point t∗ of σ, we have thus
proved that such point is unique. Let us assume that t∗ ∈ (0, S) or S = ∞, since to account for
the boundary maxima case an approach slightly different to ours is needed.

The maximum can either be caused by intersection of some two lines l±(t) = m± + µ±t from
D(t), that is,

t∗ =
m+ −m−
µ− − µ+

in which case σ′ is discontinuous at t∗, or by a point away from the lines’ intersections, satisfying
σ′(t∗) = 0, that is,

t∗ =
Hm

µ(1 −H)
.

Finally, these two types of maxima can coincide, giving rise to a power-asymmetric behavior
near t∗

σ(t)

σ(t∗)
= 1 −A±|t− t∗|γ±

(
1 + o(1)

)
with γ± ∈ {1, 2}. Precisely, if

−C
(1)
± =

σ′
±(t∗)

σ(t∗)
=

H

t∗
− µ±

m± + µ±t∗
< 0,
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then γ± = 1 and A± = C
(1)
± . If on the other hand C

(1)
± = 0, then under the following non-

degeneracy assumption

−C
(2)
± =

σ′′
±(t∗)

σ(t∗)
= −H

t2∗
+

µ2
±

(m± + µ±t∗)
2 < 0

we have γ± = 2 and A± = C
(2)
± .

Now we may introduce the natural asymptotic parameter

N̂ =

√
N

σZ(t∗)

and formulate the corollary on the many inputs proportional reinsurance model.

Corollary 6.1. Let TN satisfy the condition

lim
N→∞

TN N̂1/H = T ∈ [0,∞).

• If either γ+ or γ− equals 2, then

Π̃(N) =

√
π

2

1√
A

(
1γ+=2 + 1γ−=2

)HP
2H

(
T/21/2Ht∗

)
21/2Ht∗

N̂ ζΨ(N̂)
(

1 + o(1)
)
.

• If both γ± = 1 > 2H, then

Π̃(N) =

(
1

A−
+

1

A+

) HP
2H

(
T/21/2Ht∗

)
21/2Ht∗

N̂ ζΨ(N̂)
(

1 + o(1)
)
.

• If both γ± = 1 = 2H, then

Π̃(N) = HP
2H,h(T/21/2Ht∗)Ψ(N̂)

(
1 + o(1)

)
.

• If γ± = 1 < 2H, then
Π̃(N) = Ψ(N̂)

(
1 + o(1)

)
.

6.3 Proof of Theorem 6.1

This section is dedicated to the proof of Theorem 6.1.

6.3.1 Large vicinities.

Looking ahead, we shall prove that only a small vicinity of the optimal point contributes to
the first order asymptotics, and to evaluate its contribution we shall divide this small vicinity
into even smaller parts of some size q(u) (referred to as the Pickands scale of the process Z,
determined only by the covariance structure of Z), on which the uniform local Pickands lemma
may be applied. It follows directly from the Piterbarg inequality (see, e.g. Theorem 8.1 of [11])
and the following obvious but important property of the Parisian functional:

PE,F (f) = sup
t∈E

inf
s∈F

f(t + s) ≤ sup
t∈E

f(t) (6.3)
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that

lim sup
u→∞

ΠE\[−δ−(u),δ+(u)](u)

uκΨ(u)
= 0

for δ±(u) = u−2/γ± ln2/γ± u and all κ > 0. Since we intend to prove that Π(u) ∼ HuκΨ(u) for
some H, κ > 0, from this inequality will follow that Π(u) ∼ Π[−δ−(u),δ+(u)](u) as u → ∞. We
can narrow the vicinity even further by once again using (6.3) and applying Lemma 6.2 (Lemma
5.4 from [16])

lim sup
u→∞

Π
[−δ−(u),δ+(u)]\[−Λu−2/γ− ,Λu−2/γ+ ]

(u)

uκΨ(u)
≤ Ce−cΛγ

where γ = max{γ−, γ+}. Due to this inequality, we may concentrate on the exact asymptotics
of

Π∆(u,Λ)(u) where ∆(u,Λ) = ∆+(u,Λ) ∪ ∆−(u,Λ), ∆±(u,Λ) = ±[0,Λu−2/γ± ]

and then let Λ → ∞.

6.3.2 Pickands intervals.

Next, we introduce the left and right Pickands intervals ∆±
k (u, λ) with some additional parameter

λ > 0
∆±

k (u, λ) = ±λq(u)[k, k + 1], where ν = min{α, γ+, γ−}, q(u) = u−2/ν ,

and the number of those fitting into the large vicinity ∆±(u,Λ):

N±(u, λ,Λ) =

⌊
|∆±(u)|
λu−2/ν

⌋
=

⌊
Λuζ±

λ

⌋
, ζ± =

2

ν
− 2

γ±
= max

{
2

α
− 2

γ±
,

2

γ∓
− 2

γ±
, 0

}
≥ 0.

We shall split the proof in four cases:

Pickands case γ ̸= ν = α

Piterbarg case γ = ν = α

Talagrand-1 case γ = ν ̸= α

Talagrand-2 case γ ̸= ν ̸= α

In the Pickands case at least one of ζ± is nonzero, therefore N± grows as uζ± . In both Piterbarg
and Talagrand-1 cases ζ+ = ζ− = 0, hence u 7→ N± is constant and we can set λ = Λ, in
which case N± = 1 and the zeroth Pickands interval coincides with the informative vicinity.
The Talagrand-2 case is to be treated separately.

6.3.3 Pickands case.

To deal with the Pickands case, we employ the so-called double sum method, which is based on
the Bonferroni inequality

Σ1(u, λ,Λ) −Σ2(u, λ,Λ) ≤ Π∆(u,Λ)(u) ≤ Σ′
1(u, λ,Λ),

where

Σ1(u, λ,Λ) =

N+(u,λ,Λ)∑
k=1

Π∆+
k (u,λ)(u)︸ ︷︷ ︸

=:Σ+
1 (u,λ,Λ)

+

N−(u,λ,Λ)∑
k=1

Π∆−
k (u,λ,Λ)(u)︸ ︷︷ ︸

=:Σ−
1 (u,λ,Λ)

+ Π∆+
0 (u,λ)∪∆−

0 (u,λ)(u)︸ ︷︷ ︸
=:Σ0(u,λ)

,
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and Σ′±
1 and Σ′

1 = Σ′+
1 + Σ′−

1 + Σ0 denote the same Σ1 but with N± + 1 instead of N± (so
that the collection of Pickands intervals indeed cover ∆(u,Λ)), and finally

Σ2(u, λ,Λ) =
∑

κ,κ′∈{+,−},
1≤k≤Nκ(u,λ,Λ),

1≤k′≤Nκ′ (u,λ,Λ),
(κ,k)̸=(κ′,k′)

P
{
P∆κ

k(u,λ,Λ),[0,Tu](Z) > u,P
∆κ′

k′ (u,λ,Λ),[0,Tu]
(Z) > u

}
.

Since the Parisian functional is bounded from above by sup functional, we can reduce the double
sum estimate to the classical (sup) case

Σ2(u, λ,Λ) ≤
∑

κ,κ′∈{+,−},
1≤k≤Nκ(u,λ,Λ),

1≤k′≤Nκ′ (u,λ,Λ),
(κ,k)̸=(κ′,k′)

P

 sup
∆κ

k(u,λ,Λ),
Z(t) > u, sup

∆κ′
k′ (u,λ,Λ),

Z(t) > u

 ,

and using similar arguments as in the proof of negligibility of Θ(u) in [17] (see pages 84–85)
obtain

lim
λ→∞

lim
Λ→∞

lim sup
u→∞

Σ2(u, λ,Λ)

ukΨ(u)
= 0 for all k > 0. (6.4)

We shall prove that if there exist two constants C± > 0 such that

lim
λ→∞

lim
Λ→∞

lim
u→∞

Σ±
1 (u, λ,Λ)

uζ±Ψ(u)
= C±,

which together with the double sum estimate above and

lim
λ→∞

lim
u→∞

Σ0(u, λ)

Ψ(u)
= H0 ∈ (0,∞), (6.5)

yields

lim
Λ→∞

lim
u→∞

Π∆(u,Λ)(u)

uζΨ(u)
= C,

where ζ = max{ζ+, ζ−} > 0 and C = C+1ζ=ζ+ + C−1ζ=ζ− . Finally, we obtain

Π(u) ∼ CuζΨ(u).

6.3.4 Piterbarg and Talagrand-1 cases.

As noted before, in both Piterbarg and Talagrand-1 cases u 7→ N±(u, λ,Λ) is constant. We may
set λ = Λ, which makes this constant equal one, and therefore

Π∆(u,Λ) = Σ0(u,Λ).

By (6.5), we have

lim
Λ→∞

lim
u→∞

Σ0(u,Λ)

Ψ(u)
= H0

for some H0 > 0, which together with Lemma 6.4.3 yields Π(u) ∼ H0Ψ(u). In the Talagrand
case ν ̸= α we shall see that H0 = 1, and therefore Π(u) ∼ Ψ(u).
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6.3.5 Talagrand-2 case.

In the Talagrand-2 case we shall directly (that is, without appealing to Pickands intervals) prove
that there exists positive and finite limit

lim
u→∞

Π∆(λ,u)(u)

Ψ(u)
=

{
1, γ− < γ+,

exp(−min{A−T
γ− , A+T

γ+}), γ+ < γ−,

which ceases to depend on λ as long as λ > T .

6.3.6 Asymptotics of Σ0(u, λ) and the Piterbarg and Talagrand-1 cases

Denote
q(u) = u−2/ν , ν = min{α, γ+, γ−}.

Note that
u2/αq(u) −−−→

u→∞
1ν=α and u2/γ±q(u) −−−→

u→∞
1ν=γ± .

To apply the uniform local Pickands Lemma 6.1, let us rewrite the probability Σ0(u, λ) in terms
of a standardized process as follows:

Σ0(u, λ) = P
{
P∆+

0 (u,λ)∪∆−
0 (u,λ)(Z) > u

}
= P

{
P ′(ξu,0) > u

}
,

where we have defined P ′ = P[−λ,λ],[0,1] and the family {ξu,0 : u > 0} of centered Gaussian
processes by

ξu,0(t, s) =
Z(q(u)t + Tus)

1 + g(q(u)t + Tus)
, 1 + g(t) =

1

σZ(t)
.

Note that in contrast to ξu,k, k > 0 (see below), the process ξu,0 is defined for t ∈ [−λ, λ], not
[0, λ]. This is neither a coincidence, nor a technical decision: the two adjacent intervals near the
optimal point cannot be treated separately as it will be evident from the result.

By (6.2) and the definition of g we have

u2g(q(u)t + Tus) → h(t + Ts) = h+(t + Ts)1ν=γ+ + h−(t + Ts)1ν=γ− ,

where
h±(µ) = A±|µ|γ±1±µ>0.

By assumption A2 we have

u2E
{∣∣Z(q(u)t + Tus) − Z(q(u)t′ + Tus

′)
∣∣2}→ 2D1ν=α

∣∣∣(t− t′) + T (s− s′)
∣∣∣α,

which means that the condition C2 is satisfied with

η(t, s) = Bα/2(t + s)1ν=α, (t, s) ∈ [−D1/αλ,D1/αλ] × [0, D1/αT ]

for T ≥ 0. By the uniform local Pickands Lemma 6.1 (condition (C3) is obviously satisfied) we
have

lim
u→∞

Σ0(u, λ)

Ψ(u)
= HP0

η,h

(
[−D1/αλ,D1/αλ] × [0, D1/αT ]

)
,

where HP0
η,h(E) = E

{
eP(ηh)

}
, P0 = P[−λ,λ],[0,T ] and

ηh(t, s) =
(√

2Bα/2(t + s) − |t + s|α
)

1ν=α

−A−D
−γ−/α|t + s|γ−1t+s≤0,ν=γ− −A+D

−γ+/α|t + s|γ+1t+s≥0,ν=γ+ . (6.6)
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Piterbarg case.

To prove the main theorem in the Piterbarg case γ = α = ν, that is when ηh has all the terms

ηh(t, s) =
(√

2Bα/2(t + s) − |t + s|α
)
−A−D

−γ−/α|t + s|γ−1t+s≤0 −A+D
−γ+/α|t + s|γ+1t+s≥0,

it remains to apply the standard result on the existence of Piterbarg constants to see that

lim
λ→∞

lim
u→∞

Σ0(u, λ)

Ψ(u)
= lim

λ→∞
HP0

η,h

(
[−D1/αλ,D1/αλ] × [0, D1/αT ]

)
= HP0

η,h(D1/αT )

exists and is finite. This ends the proof of the main theorem in the Piterbarg case.

Talagrand-1 case.

In the Talagrand-1 case γ = ν ̸= α and, therefore, the random part disappears from (6.6),
whereas all non-random terms are present:

ηh(t, s) = −A+D
−γ+/α|t + s|γ+1t+s≥0 −A−D

−γ−/α|t + s|γ−1t+s≤0

It remains to calculate P0(η
h) explicitly: if λ > T , we have

P0

(
ηh
)

= sup
t∈[−λ,λ]

inf
s∈[0,T ]

(
−A+|t + s|γ+1t+s≥0 −A−|t + s|γ−1t+s≤0

)

= max

{
sup

t∈[−λ,−T ]
inf

s∈[0,T ]
(−A−|t + s|γ−) , sup

t∈[−T,λ]
inf

s∈[0,T ]
(−A+|t + s|γ+)

}

= max

{
sup

t∈[−λ,−T ]
(−A−|t|γ−), sup

t∈[−T,λ]
(−A+|t + T |γ+)

}

= max {−A−T
γ− , 0} = 0.

Therefore, by lemma above in the Talagrand case

HP0
η,h

(
[−D1/αλ,D1/αλ] × [0, D1/αT ]

)
= 1

for all λ > T . Thus, we have proved that

lim
λ→∞

lim
u→∞

Σ0(u, λ)

Ψ(u)
= 1.

This ends the proof of the main theorem in the Talagrand case.

6.3.7 Talagrand-2 case.

To apply the uniform local Pickands Lemma 6.1, let us rewrite the probability Π∆(u,Λ)(u) in
terms of a standardized process as follows. First, observe that the trivial equality

t + s = (t + s)1t+s≥0 + (t + s)1t+s≤0, (t, s) ∈ [−λu−2/γ− , λu−2/γ+ ] × [0, Tu]

may be rewritten as

t + s = q(u, t′, s′) = q+(u, t′, s′) + q−(u, t′, s′), (t′, s′) ∈ [−λ, λ] × [0, 1].
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where
q±(u, t′, s′) =

(
u−2/γ±t′ + Tus

′
)

1±(u−2/γ± t′+Tus′)≥0
.

Using this reparametrization, we rewrite

Π∆(u,λ)(u) = P
{
P
[−λu−2/γ− ,λu−2/γ+ ]

(Z) > u
}

= P
{
P ′(ξu,0) > u

}
,

where we have defined P ′ = P[−λ,λ],[0,1] and the family {ξu,0 : u > 0} of centered Gaussian
processes by

ξu,0(t
′, s′) =

Z(q(u, t′, s′))

1 + g(q(u, t′, s′))
, 1 + g(t) =

1

σZ(t)
.

Note that
u2/γ±q±(u, t′, s′) →

(
t′ + 1ν=γ±Ts

′
)

1±(t′+1ν=γ±Ts′)≥0

uniformly in (t′, s′). By (6.2) and the definition of g we have

u2g(q(u, t′, s′)) ∼ A+|u2/γ+q+(u, t′, s′)|γ+ + A−|u2/γ−q−(u, t′, s′)|γ−

∼ A+|t′ + 1ν=γ+Ts
′|γ+1t′+1ν=γ+Ts′≥0 + A−|t′ + 1ν=γ−Ts

′|γ−1t′+1ν=γ−Ts′≥0.

By assumption A2 we have

u2E
{∣∣Z(q(u, t′1, s

′
1)) − Z(q(u, t′2, s

′
2))
∣∣2}→ 0,

which means that the condition C2 η(t, s) = 0.

By the uniform local Pickands Lemma 6.1 (condition C3 is obviously satisfied) we have

lim
u→∞

Π∆(u,λ)(u)

Ψ(u)
= HP0

0,h([−λ, λ] × [0, T ]),

where HP0
0,h(E) = eP0(−h), P0 = P[−λ,λ],[0,T ] and

h(t, s) = A−|t + 1ν=γ−s|γ−1t+1ν=γ−s≤0 + A+|t + 1ν=γ+s|γ+1t+1ν=γ+s≥0.

Since we are looking at a case where γ ̸= ν, either 1ν=γ− or 1ν=γ+ is zero. Suppose, ν = γ− ̸= γ+.
Then

h(t, s) = −A−|t + s|γ−1t+s≤0 −A+|t|γ+1t≥0.

therefore, we have

P(h) = max

{
sup

t∈[−λ,0]
inf

s∈[0,t]

(
− a−|t + s|γ−1t+s≤0

)
, sup
t∈[0,λ]

inf
s∈[0,t]

(
− a+|t|γ+

)}

= max

{
sup

t∈[−λ,0]
inf

µ∈[t,t+t]

(
− a−|µ|γ−1µ≤0

)
, 0

}
= 0

since the first term is non-positive.

If, on the other hand, ν = γ+ ̸= γ−, we have

h(t, s) = −a−|t|γ−1t≤0 − a+|t + s|γ+1t+s≥0
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and therefore for λ > T we have

P(h) = max

{
sup

t∈[−λ,0]
inf

s∈[0,T ]

(
−A−|t|γ− −A+|t + s|γ+1t+s≥0

)
, sup
t∈[0,λ]

inf
s∈[0,T ]

(
−A+|t + s|γ+

)}

= max

{
sup

t∈[−λ,0]
inf

µ∈[t,t+T ]

(
−A−|t|γ− −A+|µ|γ+1µ≥0

)
,−A+|T |γ+

}

= max

{
sup

t∈[−λ,0]
min

{
−A−|t|γ− , inf

µ∈[0,max(t+T,0)]

(
−A−|t|γ− −A+|µ|γ+

)}
,−A+|T |γ+

}

= max

{
sup

t∈[−λ,0]

(
−A−|t|γ− −A+|max(t + T, 0)|γ+

)
,−A+|T |γ+

}

= max

{
sup

t∈[−λ,−T ]

(
−A−|t|γ−

)
, sup
t∈[−T,0]

(
−A−|t|γ− −A+|t + T |γ+

)
,−A+|T |γ+

}

= max

{
−A−|T |γ− , sup

µ∈[0,T ]

(
−A−|µ|γ− −A+|T − µ|γ+

)
,−A+|T |γ+

}

= −min {A−T
γ− , A+T

γ+}

We have thus proved that

HP
0,h([−λ, λ] × [0, T ]) = eP(−h) =

{
1, γ− < γ+,

exp(−min{A−T
γ− , A+T

γ+}), γ+ < γ−

for all λ > T .

6.3.8 Pickands case.

Now we proceed to the Pickands case.

To find the aforementioned asymptotics of Σ±
1 (u, λ,Λ) we shall first find the uniform in k ∈

{1, . . . , N±(u, λ,Λ)} asymptotics of each summand Π∆±(u,λ,Λ)(u) and then sum them up. To
this end, let us rewrite the probability in the form required for the uniform local Pickands
Lemma 6.1

Π∆±
k (u,λ,Λ)(u) = P

{
P∆±

k (u,λ,Λ),[0,Tu]
(Z) > u

}
= P

{
P ′′(ξ±u,k) > u

}
,

where we have defined P ′′ = P[0,λ],[0,1] and the family

{ξκu,k : κ ∈ {+,−}, 1 ≤ k ≤ N±(u, λ,Λ), u > 0}

of centered Gaussian processes by

ξ±u,k(t, s) =
Z̃±
u,k(t, s)

1 + h±u,k(t, s)
, 1 + h±u,k(t, s) =

1

σZ(±q(u)(λk + t) + Tus)

and

Z̃±
u,k(t, s) =

Z(±q(u)(λk + t) + Tus)

σZ(±q(u)(λk + t) + Tus)
,
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t ∈ [0, λ], s ∈ [0, 1]. Note that Z̃±
u,k is a centered Gaussian random field with unit variance

and continuous paths. Besides, h±u,k ∈ C0([0, λ] × [0, T ]), that is, it is a continuous function on
[0, λ] × [0, T ], such that h±u,k(0, 0) = 0.

There is, however, a pitfall in trying to apply uniform local Pickands Lemma 6.1 directly to
ξ±u,k. Even though u2hu,k may have a limit h for each k, it is never uniform. In other words, the
condition (C1)

lim
u→∞

sup
k∈Ku,(t,s)∈[0,λ]×[0,T ]

∣∣u2hu,k(t, s) − h(t, s)
∣∣ = 0

is not satisfied. To get around this inconvenience, we shall coarsen the inequality describing the
event by taking 1 + hu,k out of P ′′

P
{
P ′′(Z̃u,k)/U(1 + h±u,k) > u

}
≤ Π∆±

k (u,λ)(u)

= P
{
P ′′(ξu,k) > u

}
≤ P

{
P ′′(Z̃u,k)/L(1 + h±u,k) > u

}
,

where
U(f) = sup

t∈[0,λ]
sup

s∈[0,T ]
f(t + s) and L(f) = inf

t∈[0,λ]
inf

s∈[0,T ]
f(t + s).

Let us rewrite it in a handier fashion as

P
{
P ′′(Z̃u,k) > u

(
1 + U(h±u,k)

)}
≤ Π∆±

k (u,λ)

= P
{
P ′′(ξu,k) > u

}
≤ P

{
P ′′(Z̃u,k) > u

(
1 + L(h±u,k)

)}
.

Using the assumption that A± > 0, we get

L(h+u,k) = A+

∣∣∣λq(u)k
∣∣∣γ+ , U(h+u,k) = A+

∣∣∣λq(u)(k + 1) + Tu

∣∣∣γ+
and

L(h−u,k) = A−

∣∣∣− λq(u)k + Tu

∣∣∣γ− , U(h−u,k) = A−

∣∣∣λq(u)(k + 1)
∣∣∣γ− .

All four bounds can be rewritten as follows:

L(h±u,k) = A±

∣∣∣λq(u)k − q(u)m±(u)
∣∣∣γ± , U(h±u,k) = A±

∣∣∣λq(u)k + q(u)(λ + m∓(u))
∣∣∣γ± ,

where m+(u) = 0 and m−(u) = Tu/q(u) → T as u → ∞. It is important for us that m± do not
depend on k and have finite limits as u → ∞.

In order to apply the uniform local Pickands Lemma 6.1 to the upper bound, we set

gu,k(λ) = u
(

1 + A±

∣∣∣λq(u)k − q(u)m±(u)
∣∣∣γ±)

and note that the condition (C2) remains valid with gu,k instead of u. It now follows directly
from the uniform local Pickands Lemma 6.1 that with P = P[0,λ],[0,T ] we have

P
{
P ′′(Z̃u,k) > gu,k(λ)

}
= HP

2H

(
D1/αλ,D1/αT

)
Ψ(u)

× exp
(
−A±

∣∣∣λu−ζ±k − u−ζ±m±(u)
∣∣∣γ+) (1 + o(1)),
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where o(1) is uniform in k ∈ {1, . . . , N±(u, λ,Λ)}. Thus,

Σ±
1 (u, λ,Λ) ≤

N±(u,λ,Λ)∑
k=1

P
{
P(Z̃u,k) > gu,k(λ)

}

∼ HP
2H

(
D1/αλ,D1/αT

)
Ψ(u)

N±(u,λ,Λ)∑
k=1

exp
(
−A±

∣∣∣λu−ζ±k − u−ζ±m±(u)
∣∣∣γ±)

∼
HP

2H

(
D1/αλ,D1/αT

)
λ

uζ±Ψ(u)

∫ Λ

0
e−A±xγ±

dx

and, letting u → ∞, then Λ → ∞ and finally λ → ∞, we see that for large enough u, holds

lim
λ→∞

lim
Λ→∞

lim sup
u→∞

Σ±
1 (u, λ,Λ)

uζ±Ψ(u)
≤ Γ

(
1

γ±
+ 1

)
A

−1/γ±
± D1/αHP

α (D1/αT )

where

HP
α (T ) = lim

λ→∞

HP
α (λ, T )

λ
∈ (0,∞).

Using lower bound in much the same fashion, we obtain

lim
λ→∞

lim
Λ→∞

lim sup
u→∞

Σ±
1 (u, λ,Λ)

uζ±Ψ(u)
= Γ

(
1

γ±
+ 1

)
A−1/γ±D1/αHP

α (D1/αT ).

The same formula obviously holds for Σ′±
1 . To conclude the proof in the Pickands case, it

remains to notice that

lim
λ→∞

lim
Λ→∞

lim
u→∞

Σ1(u, λ,Λ)

uζΨ(u)

= lim
λ→∞

lim
Λ→∞

lim
u→∞

(
uζ+−ζΣ

+
1 (u, λ,Λ)

uζ+Ψ(u)
+ uζ−−ζΣ

−
1 (u, λ,Λ)

uζ−Ψ(u)
+ u−ζΣ0(u, λ)

Ψ(u)

)

=

(
Γ

(
1

γ+
+ 1

)
A

−1/γ+
+ 1ζ=ζ+ + Γ

(
1

γ−
+ 1

)
A

−1/γ−
− 1ζ=ζ+

)
D1/αHP

α (D1/αT ),

that the same is obviously true for Σ′
1, and that 1ζ=ζ± = 1γ=γ± .

6.4 Appendix

In this appendix, we recall some known results necessary for the proofs of previous section.

6.4.1 Parisian functional continuity

We show now that the Parisian functional P : C(E×F ) → R is continuous in uniform topology.
To this end, we take an arbitrary function f ∈ C(E × F ) and a family {fε, ε > 0} ⊂ C(E × F ),
which converges to a function f ∈ C(E × F ) uniformly

sup
(t,s)∈E×F

∣∣∣f(t, s) − fε(t, s)
∣∣∣ < ε
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as ε → 0, from which we obtain{
f(t, s) − fε(t, s) < ε,

fε(t, s) − f(t, s) < ε
for all (t, s) ∈ E × F.

Hence,

sup
t∈E

inf
s∈F

f(t, s) < ε + sup
t∈E

inf
s∈F

fε(t, s) and sup
t∈E

inf
s∈F

fε(t, s) < ε + sup
t∈E

inf
s∈F

f(t, s),

or, equivalently, ∣∣∣ sup
t∈E

inf
s∈F

f(t, s) − sup
t∈E

inf
s∈F

fε(t, s)
∣∣∣ =

∣∣∣P(f) − P(fε)
∣∣∣ < ε.

6.4.2 Uniform local Pickands lemma

The following lemma is from [15], it is reproduced here for the reader’s convenience. Let

ξu,τu(t) =
Zu,τu(t)

1 + hu,τu(t)
, t ∈ E, τu ∈ Ku,

be a family of centered Gaussian random fields with Zu,τu a centered Gaussian random field with
unit variance and continuous paths, and hu,τu belonging to C0(E), that is, hu,τu is a continuous
function on E, such that hu,τu(0) = 0. We assume that E is a compact subset of Rd and 0 ∈ E.

The Parisian functional ΓE,F

ΓE,F (X) = sup
t∈E

inf
s∈F

X(t + s)

satisfies the conditions

(F1) there exists c > 0 such that Γ(f) ≤ c supt∈E f(t) for any f ∈ C(E)

(F2) Γ(af + b) = aΓ(f) + b for any f ∈ C(E) and a > 0, b ∈ R

of the paper [15]. Therefore, under conditions (C0)–(C3)

(C0) limu→∞ infτu∈Ku gu,τu = ∞

(C1) there exists h ∈ C0(E) such that

lim
u→∞

sup
τu∈Ku,t∈E

∣∣g2u,τuhu,τu(t) − h(t)
∣∣ = 0

(C2) there exists θu,τu(t, s) such that

lim
u→∞

sup
τu∈Ku

sup
s ̸=t∈E

∣∣∣∣∣∣g2u,τu
E
{
|Zu,τu(t) − Zu,τu(s)|2

}
2θu,τu(t, s)

− 1

∣∣∣∣∣∣ = 0,

where for some centered Gaussian random field η(t), t ∈ Rd with continuous paths and
η(0) = 0,

lim
u→∞

sup
τu∈Ku

∣∣∣θu,τu(t, s) − E
{
|η(t) − η(s)|2

}∣∣∣ = 0.
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(C3) there exists a > 0 such that

lim sup
u→∞

sup
τu∈Ku

sup
s ̸=t∈E

θu,τu(t, s)∑d
i=1 |si − ti|a

< ∞,

lim
ε→0

lim sup
u→∞

sup
τu∈Ku

sup
∥t−s∥<ε,t,s∈E

g2u,τuE {[Zu,τu(t) − Zu,τu(s)]Zu,τu(0)} = 0.

we have

Lemma 6.1. Under assumptions (C0)–(C3) and if P(ΓE,F (ξu,τu) > gu,τu) > 0 for all τu ∈ Ku

and all large u, then

lim
u→∞

sup
τu∈Ku

∣∣∣∣P{Γ(ξu,τu) > gu,τu}
Ψ(gu,τu)

−HΓ
η,h(E)

∣∣∣∣ = 0,

where
HG

η,h(E) = E
{
eΓ(η

h)
}
, ηh(t) =

√
2η(t) − σ2

η(t) − h(t).

6.4.3 Large vicinity cut-off lemma

Next lemma is from [16] (Lemma 5.4), but instead of the version therefrom, we give a version
suitable for our needs. This lemma allows one to get rid of the complement of the Piterbarg
vicinity in all three (Piterbarg, Pickands and Talagrand) cases (see proof of Theorem 6.1).

Lemma 6.2. There exist positive constants C, c, u0 and Λ0 such that for Λ ≥ Λ0 and u ≥ u0

P
{
∃t ∈

[
−δ−(u),Λu−2/γ−

]
∪
[
Λu−2/γ+ , δ+(u)

]
: Z(t) > u

}
≤ Ce−cΛγ

P {Z(0) > u} .

where δ±(u) = u−2/γ± ln2/γ± u.
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[3] M. Chesney, M. Jeanblanc-Picqué, and M. Yor, “Brownian excursions and Parisian barrier
options,” Adv. in Appl. Probab., vol. 29, no. 1, pp. 165–184, 1997.

[4] A. Dassios and S. Wu, “Semi-Markov model for excursions and occupation time of Markov
processes,” 2011.

[5] A. Dassios and S. Wu, “Parisian ruin with exponential claims,” LSE Research Online Doc-
uments on Economics, 2008.

[6] I. Czarna and Z. Palmowski, “Ruin probability with Parisian delay for a spectrally negative
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